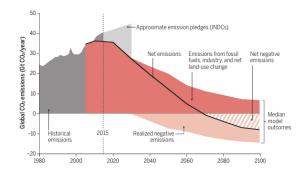


Assessing the potential of photoelectrochemical carbon removal as negative emission technology

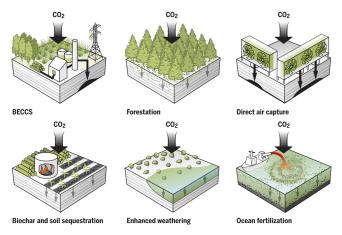
Matthias M. May^{1,*}, Kira Rehfeld²


Matthias.May@helmholtz-berlin.de

1: Helmholtz-Zentrum Berlin, Institute for Solar Fuels. 2: Universität Heidelberg, Institute of Environmental Physics

> EGU General Assembly 2019 10.04.2019

Negative emissions



- Anthropogenic emission rates are reduced too slowly
- \rightarrow Almost all climate models assume negative emissions, where energy is invested to sequester atmospheric CO₂, starting from 2030
 - Type of technology and costs still very speculative

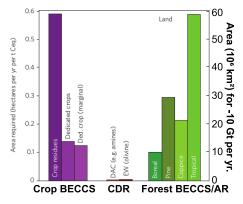
[1] Anderson and Peters, Science 354 (2016). [2] Hansen et al., Earth Syst. Dyn. 8 (2017).

Technologies

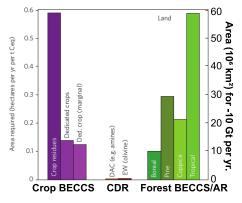
- Most considered technologies are based on natural photosynthesis
- Sequestration of CO₂ itself mainly relies on (safe) mineral trapping [2]
- [1] J. Rosen, Science 359 (2018). [2] Smith et al., Nat. Clim. Change 6 (2016).

Scalable!

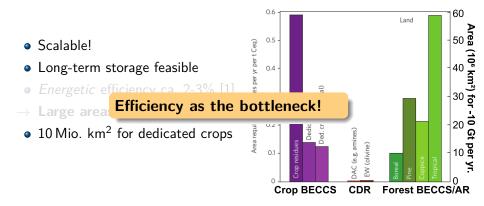
- Long-term storage feasible
- Energetic efficiency ca. 2-3% [1]
- \rightarrow Large areas [2,3]:
- 10 Mio. km² for dedicated crops


- Scalable!
- Long-term storage feasible
- Energetic efficiency ca. 2-3% [1]
- \rightarrow Large areas [2,3]:
- 10 Mio. km² for dedicated crops

Natural Photosynthesis


- Scalable!
- Long-term storage feasible
- Energetic efficiency ca. 2-3% [1]
- \rightarrow Large areas [2,3]:
 - 10 Mio. km² for dedicated crops

Natural Photosynthesis



- Scalable!
- Long-term storage feasible
- Energetic efficiency ca. 2-3% [1]
- \rightarrow Large areas [2,3]:
 - $\bullet~10\,Mio.~km^2$ for dedicated crops

Natural Photosynthesis

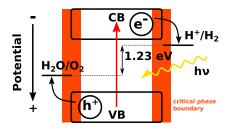
[1] A. Melis, Energy Environ. Sci. 5 (2012). [2] Smith et al., Nat. Clim. Change 6 (2016).

[3] Heck et al., Nat. Clim. Change 8 (2018).

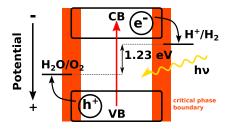
Artificial Photosynthesis

- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems
- ightarrow Challenges of PV & electrocatalysis
- For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
- Negative-emissions-hydrogen [2]

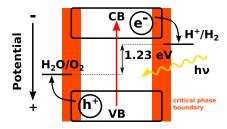
Artificial Photosynthesis



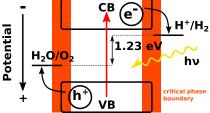
- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems
- ightarrow Challenges of PV & electrocatalysis
- For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
- Negative-emissions-hydrogen [2]



- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems
- \rightarrow Challenges of PV & electrocatalysis
 - For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
 - Negative-emissions-hydrogen [2]

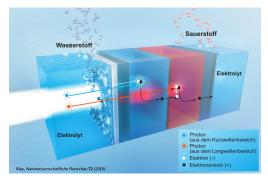


- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems
- $\rightarrow\,$ Challenges of PV & electrocatalysis
 - For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
 - Negative-emissions-hydrogen [2]


- (Photo)electrochemical CO₂ reduction
- PV-coupled to dark electrolysis or
- Integrated systems
- $\rightarrow\,$ Challenges of PV & electrocatalysis
 - For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
 - Negative-emissions-hydrogen [2]

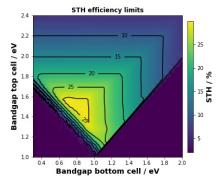
Zentrum Berlin

- PV-coupled to dark electrolysis or
- Integrated systems ۲
- Challenges of PV & electrocatalysis
- For hydrogen, with 19% energetic efficiency about 10x more efficient than its natural counterpart [1]
- Negative-emissions-hydrogen [2]


May & Rehfeld, Earth Syst. Dyn. 10 (2019). DOI:10.5194/esd-10-1-2019

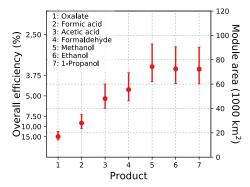
[1] Cheng, Richter, May et al., ACS Energy Lett. 3 (2018). [2] Rau et al., Nat. Clim. Change 8 (2018).

© 0

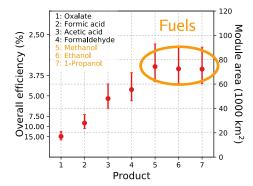

- Multi-junction absorbers required to produce $> 1.6 \, \text{V}$ photovoltage
- Suitable bandgap combinations, efficient catalysis

• Model using detailed balance, $\eta(j)$ from catalysis [2]

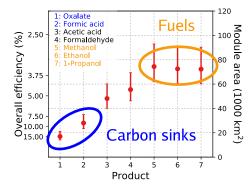
[1] May et al., Nat. Comm. 6 (2015). [2] May, et al., Chapter 12 in Integrated Solar Fuel Generators, RSC (2018).


- Multi-junction absorbers required to produce > 1.6 V photovoltage
- Suitable bandgap combinations, efficient catalysis
- Model using detailed balance, $\eta(j)$ from catalysis [2]

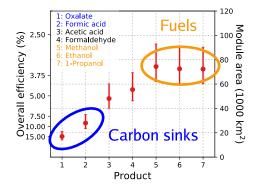
[1] May et al., Nat. Comm. 6 (2015). [2] May, et al., Chapter 12 in Integrated Solar Fuel Generators, RSC (2018).



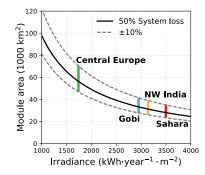
Solar-to-carbon (STC) [2]:



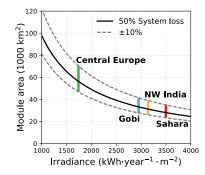
- Solar-to-Fuel efficiencies: STF $\sim \frac{j\Delta G}{P}$
- \rightarrow Not suitable for neg. emissions
- Solar-to-carbon (STC) [2]: $STC = \frac{\eta_F \eta_e j_e}{j_{ph}}$



- Solar-to-Fuel efficiencies: STF $\sim \frac{j\Delta G}{P}$
- \rightarrow Not suitable for neg. emissions
- Solar-to-carbon (STC) [2]: $STC = \frac{\eta_F \eta_e j_e}{j_{ph}}$


- Solar-to-Fuel efficiencies: STF $\sim \frac{j\Delta G}{P}$
- \rightarrow Not suitable for neg. emissions
- Solar-to-carbon (STC) [2]: $STC = \frac{\eta_F \eta_e j_e}{j_{ph}}$

Limits about 10-20 \times of (achieved) nat. photosynthesis



- Desert areas interesting due to high irradiance
- Water consumption (formate): ca. 5 km³ as opposed to > 2000 km³ for biomass [2]

[1] May and Rehfeld, Earth Syst. Dyn. 10 (2019). [2] Heck et al., Nat. Clim. Change 8 (2018).

- Desert areas interesting due to high irradiance
- $\bullet\,$ Water consumption (formate): ca. $5\,km^3$ as opposed to $>2000\,km^3$ for biomass [2]

[1] May and Rehfeld, Earth Syst. Dyn. 10 (2019). [2] Heck et al., Nat. Clim. Change 8 (2018).

- Liquid sink products in depleted fossil fuel reservoirs
- Chemical post-processing, e.g. oxalate to organic minerals [1]
- Electrochemical production of solid carbon demonstrated [2]
- Organic construction materials?


[1] B. Parkinson, Earth Syst. Dynam. Discuss. DOI:10.5194/esd-2018-53-RC1. [2] Esrafilzadeh et al. Nat. Comm. 10 (2019).

- Liquid sink products in depleted fossil fuel reservoirs
- Chemical post-processing, e.g. oxalate to organic minerals [1]
- Electrochemical production of solid carbon demonstrated [2]

• Organic construction materials?



[1] B. Parkinson, Earth Syst. Dynam. Discuss. DOI:10.5194/esd-2018-53-RC1. [2] Esrafilzadeh et al. Nat. Comm. 10 (2019).

- Liquid sink products in depleted fossil fuel reservoirs
- Chemical post-processing, e.g. oxalate to organic minerals [1]
- Electrochemical production of solid carbon demonstrated [2]
- Organic construction materials?

[1] B. Parkinson, Earth Syst. Dynam. Discuss. DOI:10.5194/esd-2018-53-RC1. [2] Esrafilzadeh et al. Nat. Comm. 10 (2019).

- Catalysts will differ from solar fuel applications
- Scalable absorbers
- Unify efficiency and stability

<u> ()</u>

- Catalysts will differ from solar fuel applications
- Scalable absorbers
- Unify efficiency and stability

c •

- Catalysts will differ from solar fuel applications
- Scalable absorbers
- Unify efficiency and stability

c •

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

 \rightarrow **Solar-To-Carbon** efficiency as benchmark for evaluation

Wide range of liquid or solid products feasible \leftrightarrow storage

<u> ()</u>

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

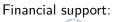
Solar-To-Carbon efficiency as benchmark for evaluation

Wide range of liquid or solid products feasible \leftrightarrow storage

© 0

Artificial photosynthesis reduces land and water footprint, but will probably be expensive

- Solar-To-Carbon efficiency as benchmark for evaluation
 - Wide range of liquid or solid products feasible \leftrightarrow storage



Artificial photosynthesis reduces land and water footprint, but will probably be expensive

- ightarrow Solar-To-Carbon efficiency as benchmark for evaluation
 - Wide range of liquid or solid products feasible \leftrightarrow storage

Thanks for your attention!

