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Introduction

Mekong hydropower development
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Designing river flows to improve food
security futures in the Lower

Mekong Basin

J. L. Sabo,* A. Ruhi, G. W. Holtgrieve, V. Elliott, M. E. Arias, Peng Bun Ngor,

T. A. Riisiinen, So Nam

INTRODUCTION: The Mekong River provides
renewable energy and food security for a popu-
lation of more than 60 million people in six
countries: China, Myanmar, Lao PDR, Thailand,
Vietnam, and Cambodia. Seasonal rains flood
the river’s floodplain and delta. This flood pulse
fuels what is likely the world’s largest fresh-
water fishery in Cambodia’s Tonle Sap Lake,
with >2 million tonnes of annual harvest val-
ued at ~$2 billion. Hydropower development
is crucial to the region’s economic prosperity
and is simultaneously a threat to fisheries and
agriculture that thrived in the natural-flow re-
gime. The Mekong is testament to the food,
energy, and water challenges facing tropical
rivers globally.

RATIONALE: We hypothesized that high fish-
eries yields are driven by measurable attributes
of hydrologic variability, and that these relation-
ships can be used to design and implement fu-
ture flow regimes that improve fisheries yield
through control of impending hydropower op-
erations. Hydrologic attributes that drive strong
fisheries yields were identified using a data-
driven approach that combined 17 years of dis-
charge and standardized harvest data with
several time-series methods in the frequency
and time domains. We then analyzed century-
scale time series of discharge data on the Mekong
and associated hydrodimate data sets to under-
stand how current dams, i of climate,
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Several of these components drive high fisheries
yields, including a long low-flow period followed
by a short, strong flood pulse with multiple
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Introduction

Some open issues

= Effect of hydro-power generation on
power supply and distribution

"  Vulnerability of the coupled water-energy
system to hydro-climatic variability
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Model setup

110 nodes (2016 data):

= Generators: 30 hydro (4,734 MW),

| coal (1,878 MW), 2 biomass (40
MW)

= Import nodes: 3 from Thailand, |
from China

=  Substations: 64 transformers

= Export nodes: 7 to Thailand, 2 to
Vietnam, | to Cambodia

* Hourly resolution
= 4,753 continuous + 93| binary
decision variables (for 24 hours)

* Implementation in Pyomo and
Gurobi
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Model setup

Electricity consumption (2016 data):
= Total national: 4,647 GWh
= Export to Thailand: 18,099 GWh

= Export toVietnam + Cambodia: 1,287 GWh
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Results

Impact of seasonal hydro-climatic variability — energy mix
= High hydro-electricity production at the peak of the monsoon season

= Strong dependence on other energy sources during the pre-monsoon months
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Results

Impact of seasonal hydro-climatic
variability — energy transmission

= ~70% of the N-I violations™
occurring during the monsoon
season

—> The dispatch of hydro-electricity is
constrained by the capacity of the
transmission lines

= ~20% of the available hydro-electricity
remains unused (mostly during the
monsoon season)

* N-1 violation: line usage is at least 75% of the line
capacity (at any hour)
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Results

Impact of inter-annual hydro-climatic variability (1996-2005) -
relation with climate drivers
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Results

Impact of inter-annual hydro-climatic variability (1996-2005) — energy mix
= The anomaly of dispatched hydro-electricity is at most 3%

" Yet, this largely influences imports and power production from coal
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Results

Impact of inter-annual hydro-climatic variability (1996-2005) — energy mix
" Production cost increases by ~20-30% during dry years

= Negative effect of droughts on CO, emissions (increase by ~25% during dry years)
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Conclusions

Impact of seasonal hydro-climatic variability
= Strong effect of seasonal water availability on the energy mix
= Dispatch constrained by the transmission capacity

= Part of the available hydro-power remains unused



Conclusions

Impact of seasonal hydro-climatic variability
= Strong effect of seasonal water availability on the energy mix
= Dispatch constrained by the transmission capacity

= Part of the available hydro-power remains unused

Impact of inter-annual hydro-climatic variability

= Strong effect of ENSO-driven water availability on the energy mix, production costs, and CO,
emissions



Conclusions

Potential interventions

Further expansion of the transmission lines
= More water storage (?)

* Forecast-informed management of the water-energy system
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Appendix



Model setup

Variable Infiltration Capacity (VIC):

= Spatial resolution: 0.0625 degrees (~6.9 km) = Soil and Land use: HWSD + GLCC

= Rainfall and Temperature: APHRODITE + = Bespoke operating rules for each
CFSR reservoir
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Model setup

Energy model - validation

: Import Import
Hydro Coal Biomass (Thailand) (China)
Observed 20883 2246 163 521 115
Simulated 20656 2453 174 541 103
% Deviance -1% 9% 7% 4% -10%




