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Fig. 1: Krummhörn region (red area) with the city of Emden 

(white dot) in Lower Saxony at the north-western German 

North Sea coast (for details see also Ulm et al., 2018).
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Fig. 2: Study area (within black dash-dotted line) and neighboring 

regions color-coded by land use: residential (red), agricultural 

(yellowish), industrial (purple), water (bluish), dike line (black).
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Scenario Storm Surges: Statistical RatingC

 Storm induced extreme water levels are among the most severe natural 

hazards along the German North Sea coast.

 In the past, extreme water levels of several meters have been observed, but 

these events have not yet been the worst physically possible combinations of 

tide and surge in this region (e.g. Dangendorf et al., 2016; Jensen & Müller-

Navarra, 2008).

 Project EXTREMENESS examines the meteorological potential to find 

extremely large and unlikely but physically possible extreme storm surge 

scenarios.

 Sub-project EXTREMENESS-D (presented here) assesses the consequences of 

storm surges for a model region at the Ems estuary, with focus on following 

questions and tasks:

? How do the extreme storm surge scenarios amplify the consequences, in 

comparison to an observed extreme event (reference “REF” scenario)?

? Which are the most vulnerable sections in today‘s coastal protection with 

regard to protected assets?

! Provide information to increase public awareness and to improve 

disaster management preparedness.

Fig. 3: 

Extreme storm surge scenario water levels for 

Emden Harbor considering (a) the HIGH 

scenario and (b) the LONG scenario. The 

scenarios can be statistically rated by applying 

a peak-over-threshold approach to the local 

observations using the 99.7th percentile of 

threshold exceedances (cf. Arns et al., 2013). 

The fitted Generalized Pareto Distribution 

(GPD) allows a rating of the scenario peak 

water levels as 1,400 year and 300 year event 

for the high scenario and the long scenario, 

respectively.

The GPD fits the observations well (R² = 0.991, 

RMSE = 5.2 cm) but, however, the return 

periods of the scenario events are only a rough 

estimate since uncertainties grow fast with far 

extrapolations, as shown by the 95% 

confidence bounds (dashed blue).
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Fig. 4: 

Dike line (black), locations of the 

dike failure scenarios (red dots), 

and an exemplary flood 

simulation result for failure 

location 6 under HIGH scenario 

conditions. The area affected by 

water [%] is colored as blue 

shading where dark blue denotes 

fully affected grid cells while 

light blue denotes only partially 

affected cells.

 2D hydrodynamic-numerical inundation model (using DHI MIKE 21) was set 

up to estimate affected areas in case of a dike failure.

 Successively, 20 different dike failure locations (each representing a ~2 km 

dike section) were integrated in the model to estimate resulting inundation 

areas during different extreme storm surges (REF, HIGH, LONG; see Fig. 3 a/b).

 Results are compiled on a hexagonal grid for easier communication.

 Extreme storm surges amplify consequences compared to the REF 

scenario. The damage increase mainly depends on the dike failure 

location resulting in different damage distributions.

 Compared to rural areas, potential damages can be up to six times larger 

in urban areas (see Fig. 6).

 Critical infrastructure transfers consequences from flooded areas to 

non-flooded areas. 

 Next step: Integrating infrastructures in the damage potential 

assessment to estimate the additional impact.
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Fig. 5: Potential damages due to an assumed failure of location 6 for the REF and the HIGH scenario. Damages were calculated for each 

simulation grid cell based on empirical damage data for the different land uses and compiled on the hexagonal grid. The damages are in 

the range of 10
5
 to 10

8
 € per hex cell. Since further analyses focus on a comparison (see Fig. 6), detailed values can be omitted.
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Fig. 6: Comparison of total damage values for the three storm surge scenarios at 

different failure locations, summed up separately by land use classes. The 

comparison shows how the dike failure location controls the total 

damage and how the storm surge water levels significantly affects 

potential damages within each failure scenario. 
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