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Development of a stand-alone Multiscale Parameter 
Regionalization (MPR) tool for the estimation of 
effective model parameters for any distributed model 



Estimating parameters for a distributed model
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f ( ⋅ ): process representation
I: process input
β: process parameters
O: process output
i: cell index
t: time index

Oit = f (Iit, βit)

studies may benefit from better transparency, interpretability, and ease of applicability. There is also an
increasing need for application oriented PTF studies that are designed to consider inputs or input levels that
serve large-scale applications, as was recently done with the hydraulic pedotransfer functions for Europe (EU-
HYDI PTFs) (Tóth et al., 2015).

3. Methodological Challenges for PTF Use in Earth System Sciences

Theoretical understanding of soil formation suggests that soil properties can be predicted as a function of
soil-forming factors such as climate, biota, topography, parent material, and time (Jenny, 1941; McBratney
et al., 2002). Information of these soil-forming factors can be used to capture and predict the spatial variation
of soil properties, for example, illustrated for soil organic carbon (SOC) stocks over Alaska (Mishra & Riley,
2012; Vitharana et al., 2017). The high-resolution soil information available nowadays allows for improved
PTFs and improved methods for extrapolation and upscaling. PTFs are basic tools to extrapolate knowledge
on soil properties from one location to another, for their application over larger geographical entities (region
to global) constrained by the understanding of interactions with the soil-forming factors. Furthermore, they
are critically determined by scale; PTFs derived in the lab at the pore scale are not applicable at field scale, and
estimations at the landscape level do not comply with regional-scale estimates. Sources of information on soil
variability are essential for the application of PTFs. Topographical and geographical information, together
with soil maps, can contribute to extrapolation of soil properties like layer depth, structure, compaction,
and organic content (Figure 3).

In this perspective of development of PTFs for land surface models, the spatial interpretation of actual high-
resolution soil information (e.g., SoilGrids https://soilgrids.org) is essential for estimating relations between
soil properties and needs to be combined with topographical and geographical information in extrapolation
and upscaling. Digital terrain models can provide detailed information on surface topography and that, in
combination with knowledge about soil types and soil properties in a landscape, can improve simulation
of 3-D landscape processes. This is a crucial step in optimizing the applicability of PTFs in Earth system
models. Soil maps show the succession of soil types as a function of soil-forming factors and define occur-
rence of slow permeable subsurface horizons that may induce seasonal lateral flow patterns, or possible
surface soil crusting causing runoff. These considerations are increasingly relevant in the light of appropriate
model benchmarking. Remote and proximal sensing and in situ monitoring devices are nowwidely available,
allowing for much better model benchmarking than was possible in the past. Such benchmarking is, of
course, essential to further model development and guiding future soil observation collection (Mishra
et al., 2017; Mishra & Riley, 2014).

Final challenge for methodological improvement that we address here is the integration of PTFs as knowl-
edge rules for different processes. Parameterization for complex models can imply different PTFs, which

Figure 3. Simplified illustration of the interpretation of landscape topography and soilmaps (background USDA-SCS diagram) to soil structure from soil samples.
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High-resolution data
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ASTER (NASA, 2001) 
elevation at 30m

POLARIS (Chaney, 2016 Geoderma) 
soil at 30m 

between NLCD and SSURGO over these areas and thus provide reliable
predictions. This explains the lack of spatial heterogeneity over these
areas in POLARIS.

Northern NewHampshire (Fig. 3— Bottom)— SSURGO does not have
estimates over parts of northern New Hampshire and western Maine.
More specifically, it lacks data over the White Mountains. DSMART-
HPC is able to gap-fill this region using information from adjacent
areas. It fills in the missing regions using component information from
smaller areas towards the north and northeast. Further inspection
shows that the components that fill in most of the missing area are de-
fined as Rock Outcrop and Saddleback. This result is encouraging since
one would expect rock outcrops in the missing region; furthermore,
the Saddleback series is also physically consistent as these soils are

commonly found in mountainous regions in Maine, New Hampshire,
and New York. The validation results over the unmapped areas in
SSURGO are inconclusive since the NASIS observations are clumped to-
gether and do not uniformly sample the unmapped areas. For the entire
region, one potential concern is the loss of certain components in favor
of more predominant ones; DSMART-HPC spatially disaggregates the
most frequent components while disregarding the less frequent ones
altogether.

Western Washington (Fig. 4 — Top) — SSURGO does not have esti-
mates for parts of the Skagit, Snohomish, King, and Pierce counties. To
gap-fill the missing areas, DSMART-HPC appears to use the mountain-
ous region to the east. Over themissing areas, themost common predic-
tion is rock outcrop. These areas are also gap-filled with soils from the

Fig. 2. Comparison of SSURGO's most dominant component (A) to POLARIS' most probable component (B). For visualization over CONUS, the 30 m POLARIS data product is upscaled to a
1 km spatial resolution using nearest neighbor interpolation. Light blue areas indicate regions where SSURGO lacks data.
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MODIS (Friedl, 2019) 
land cover, LAI, VI,… at 500m 

JRC GSW (Pekel, 2016 Nat) 
lake alimetry at 30m 

How to profit from these datasets?
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Multiscale Parameter Regionalization (MPR)
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Samaniego, 2010 (WRR), Kumar, 2013 (WRR)

steps: 
1. transfer function 
2. upscaling
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MPR key advantages 
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• Regularisation of parameter space 
at input data resolution 

• Transferability across scales and 
location

Samaniego, 2010 (WRR)

Standard Strategy

Find parameters for every
location and/or scale then
transfer them

Weser

Jucar

Po

�w

�p

�j

adapted from Samaniego

Oit = f (Iit, βi)
#βi = #i

βi = fu (ft (Pkj, γ))
#γ = 3
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MPR
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Figure 1. (a) Spatial patterns of VIC infiltration and baseflow parameters used to evaluate the impacts of climate change on water resources across the CONUS (replotted from data
used in Reclamation [2014], Wood and Mizukami [2014], Reclamation [2016]). Definitions of the model parameters are provided in Table 1. (b) 1950–1999 mean annual surface runoff and
baseflow generated by VIC simulations with the parameters used for the CONUS CMIP5 hydrologic projection assessment [Reclamation, 2014; Wood and Mizukami, 2014; Reclamation,
2016, Figure 1]. Background is Hydrologic Unit Code Level 2 (large river basin) boundary.

Water Resources Research 10.1002/2017WR020401
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Figure 4. (a) CONUS domain VIC infiltration (bi) and baseflow parameters (D1, D2, D3 in Nijssen baseflow equation (equation (1))) computed using global parameters calibrated with the
CONUS-wide calibration method and simulated total runoff. (b) Mean annual values during 1950 and 1999 are mapped for VIC surface flow and baseflow simulations. Background is
Hydrologic Code Unit level 2 (large river basin) boundary.

Water Resources Research 10.1002/2017WR020401
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Mizukami, 2017 (WRR)

• Regularisation of parameter space 
at input data resolution 

• Transferability across scales and 
location 

• Seamless parameter fields 

MPR key advantages 
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Schweppe, 2019 (in preparation)

What is the effect of using different 
transfer functions on model behaviour? 

How can MPR be implemented?

new MPR software 
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mHM

MPR
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mHM



Land-Surface Model Noah-MP

• Part of WRF HYDRO framework 
• Used in operational NOAA National 

Water Model 
• Richards’ (1931) equation & 

Campbell (1974) parameterization
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• NLDAS2 forcing 
• Hourly time step, 1/8° 

resolution 

University of Texas at Austin
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Application with Noah-MP 
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Hengl, 2017 (PLoS One) Cosby, 1984 (WRR)

USDA texture classes

predictor:
clay

predictor:
sand

dominant class

transfer function: Cosby

model parameter

average over horizons
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Application with Noah-MP 
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To confirm that the overestimated ET during spring is mainly caused by the overestimated GPP, we ran an
additional experiment (denote as EXP_LAI) without the dynamic vegetation model but with an LAI climatol-
ogy (with seasonal cycles) prescribed for each land use type. In EXP_LAI, the green vegetation fraction is cal-
culated from the prescribed LAI using themethod of Niu et al. (2011). As seen, themodel biases are reduced to
a large extent when the dynamic vegetationmodel is not used (Figure 8). In particular, the relative biases drop
to <20% over most parts of the central and eastern CONUS (see Figures 6c and 8b). In terms of the compar-
ison of 18 HUC2 regions at amultiyear mean annual scale, the NSE increases from 0.33 to 0.90, RMSE decreases
from 141.2 mm yr!1 to 55.6 mm yr!1, and RB reduces from 0.22 to 0.04 (Figure 6d versus Figure 8c).

3.4. Sensible Heat Flux

Noah-MP produces a spatial pattern of H that is comparable with that of FLUXNET, both showing smaller
values in the northeast and increasing gradually toward the southwest (Figures 9a and 9b). To balance the
overestimated ET, the modeled H is underestimated over most area of CONUS except for the West Coast
and parts of southeastern CONUS. With negative relative biases above!40%, the most obvious underestima-
tion ofH occurs in the same areas of the northeastern CONUSwhere LE is apparently overestimated (Figures 6c
and 9c). In the western costal and part of the southeastern CONUS, however, Noah-MP overestimates H by

Figure 7. The multiyear (1982–2008) mean annual cycle of evapotranspiration (ET) from Noah-MP (blue line) and FLUXNET MTE (red line) over the 18 HUC2 regions.
The light blue and red shaded areas represent the standard derivation of the Noah-MP and FLUXNET MTE ET data, respectively, to indicate the interannual variability
for each month of a year. Also shown on the top of each panel are modeling metrics in the order of R, RMSE, and NSE.

Figure 8. Spatial pattern of multiyear (1982–2008) mean annual evapotranspiration (ET) from (a) the EXP_LAI experiment of Noah-MP simulation with prescribed LAI,
(b) the relative bias [=(Noah-MP! FLUXNET MTE)/FLUXNET MTE × 100%] over CONUS, and (c) comparison of regional averages over the 18 HUC2 regions shown as
their corresponding HUC2 codes.

Journal of Geophysical Research: Atmospheres 10.1002/2017JD027597

MA ET AL. NOAH-MP EVALUATION IN CONUS 12,256

Ma, 2017 (JGRA)

transfer function: Cosby

predictor:
clay

predictor:
sand

power mean upscaling

model parameter

Hengl, 2017 (PLoS One) Cosby, 1984 (WRR)
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Application with Noah-MP 
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Saxton, 1986 (SSSAJ)

transfer function: Saxton

predictor:
clay

predictor:
sand

power mean upscaling

model parameter

Hengl, 2017 (PLoS One)
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Application with Noah-MP 
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Vereecken, 1989 & 1990 (SS)

transfer function: Vereecken

predictor:
clay

predictor:
sand

predictor:
bulk density

predictor:
organic carbon

power mean upscaling

model parameter

Hengl, 2017 (PLoS One)
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&mainconfig 
out_filename = "MyParams.nc" 
dim_name_alias(:,1) = “x_in", "x_out" 
dim_name_alias(:,2) = “y_in", "y_out" 
dim_name_alias(:,3) = “z_in", "z_out" 
/ 

&Data_Arrays 
names(1) = "clay" 
from_file(1) = "PathTo/MyNetcdfFile.nc" 
names(2) = "sand" 
from_file(2) = "PathTo/MyNetcdfFile.nc" 
names(3) = "theta" 
transfer_funcs(3) = "theta_p1 + theta_p2 * sand + theta_p3 * 
log(clay)” 
from_data_arrays(1:2,3) = "sand", "clay" 
target_dim_names(1:3,3) = "z_out", "y_out", "x_out" 
upscale_ops(1:3,4) = "1.0", "1.0", "1.0" 
/ 

&Dimensions 
dim_names(1:3) = "x_out", "y_out", "z_out" 
dim_reference(1:3) = "center", "center", "end" 
dim_step(1:2) = 0.125, 0.125 
dim_bound(3) = 0.0 
dim_vector(:,3) = 0.1, 0.4, 1.0, 2.0 
/ 

&Parameters 
parameter_names(1:3) = "theta_p1", "theta_p2", "theta_p3" 
parameter_values(1:3) = 0.505, -0.00142, -0.00037 
/

MPR configuration is simple

!13

transfer function:
✓i = ✓p1 + ✓p2 ⇤ sandi + ✓p3 ⇤ log (clayi)

input variable:
clay

input variable:
sand

upscale operator:
(
Pn

i=1 wi ⇤ ✓pi )
1
p

output variable:
✓

what you want… what you type…
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MPR configuration is flexible

MPR features dimension: 
• remapping of irregular shapes 
• broadcasting 
• splitting 
• concatenation 
• transposing
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MPR configuration is modular
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predictor variables 11
global parameters 52
model parameters 28
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Summary
• MPR uses transfer functions and upscaling 

operators to estimate model parameters 
from high-resolution data 

• Simple, flexible, modular setup, can be 
coupled to any model 

• MPR reveals uncertainty in transfer 
functions and aggregation methods 

• Code development on git.ufz.de/CHS/MPR
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Thank you!MPR
your
model MPR

your
model
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1st MPR workshop

MPR

http://git.ufz.de/CHS/MPR


Appendix
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Porosity in different models
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Samaniego, 2017 (HESS)

mHMNoah-MP

How to systematically address this problem?
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MPR configuration is flexible
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soil properties
(x,y,z)

topsoil
(x,y,z1)

subsoil
(x,y,z2)

land use
(t,y,x)

tilled topsoil
(x,y,z1,t)

subsoil
(x,y,z2,t)

effective soil properties
(x,y,z,t)



MPR verification
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MPR coupling to mHM
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transfer function:
Smax = p ⇤ lai

input variable:
lai

upscale operator:Pn
i=1 wi ⇤ Smaxi

output variable:
Smax



How MPR validation with EU-SoilHydroGrids
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2 Hengl et al., 2017 (PLOS)1 Tóth et al., 2017 (HP) 3 Weynants & Tóth, 2014

1 2 3 2



Questions

• Regionalization approach classes are defined as (Beck, 2016 (WRR)):  
• (i), catchment-by-catchment calibration followed by regression;  
• (ii), simultaneous calibration and regression;  
• (iii), geographic proximity;  
• (iv), physiographic and/or climatic similarity;  
• (v), regional calibration; and  
• (vi), Q signatures.
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