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A: Variable-coefficient Korteweg-de Vries equation

The depth h, and the background current u0, density ρ0 vary
slowly in the horizontal direction with x . Then the vertical
particle displacement is ζ ∼ η(x , t)φ(z ; x) where

ηt + cηx +
cQx

2Q
η + µηηx + ληxxx + ση = 0 ,{

ρ0(c − u0)2φz

}
z
− gρ0zφ = 0 , for − h < z < η0 ,

φ = 0 at z = −h , (c − u0)2φz = gφ at z = η0 .

The coefficients µ, λ,Q, σ are given by

Iµ = 3

∫ η0

−h
ρ0 (c − u0)2 φ3

z dz , Iλ =

∫ η0

−h
ρ0 (c − u0)2 φ2 dz ,

I = 2

∫ η0

−h
ρ0 (c − u0)φ2

z dz , Q = c2I .

Iσ = −
∫ η0

−h
φφzF0zdz , F0 = ρ0(u0u0x + w0u0z) + p0x .



B. Canonical vKdV equation

The “spatial” evolution form is

A = Q1/2η , AT +
ν

Q1/2
AAX + δAXXX + σA = 0 .

X =

∫ x

x0

dx

c
− t , T =

∫ x

x0

dx

c
, ν =

µ

c
, δ =

λ

c3
.

A further transformation yields the canonical form

Uτ + αUUX + UXXX = 0 ,

where A = RU , R = exp (−
∫ τ

0

β dτ ′) ,

τ =

∫ T

0

δ dT , α =
Rν

δQ1/2
, β =

σ

δ
.

R , α, β vary with τ . There are two conservation laws, the
vKdV equation for mass and wave action flux,

{U2}τ + {2αU3/3 + 2UUXX − U2
X}X = 0 .



C: Solitary wave train

A modulated solitary wave train is

Usol = a sech2(γθ)}+ d , θX = k , θτ = −kV ,

V − αd =
αa

3
= 4γ2k2 .

with three parameters, the amplitude a, the pedestal d and
the wavenumber k . The modulation equations are

dτ + αddX = 0 ,

expressing conservation of mass. Hence d can be regarded as
a known quantity. Conservation of wave action leads to

Aτ + (αd +
αa

3
)AX +AαdX = 0 , A = {a

3

α
}1/2 .

This is a nonlinear hyperbolic equation for A alone.
Conservation of waves is the third equation,

kτ + (kV )X = 0 , where V = αd +
αa

3
,

can be regarded as known. This is a linear hyperbolic equation.



D: Solitary wave train similarity solutions

α > 0 Development of undular bore:

d = 0 , a =
3α1/3X

χ
> 0 , χ =

∫ τ

0

α4/3(τ ′) dτ ′ .

This holds over the domain Xm(τ) < X < XM(τ) say. At the
head the amplitude is aM = 3α1/3XM/χ, and at the rear the
amplitude is am = 3α1/3Xm/χ.
α < 0 Rarefaction wave with following undular bore:

d =
X − X0

η
, η =

∫ τ

τc

α(τ ′) dτ ′ , X < X0 ,

a = −3|α|1/3X
ηξ

< 0 , ξ =

∫ η

−∞

|α(η′)|1/3 dη′

|η′|5/3
,

Since α < 0, η < 0, ensuring that the rarefaction wave
d > 0, a < 0 in X < X0.



1. Internal solitary waves: Ocean

Internal tide and solitary waves, Pacific North West
An Atlas of Oceanic Internal Solitary Waves (May 2002) Oregon Coast - Colombia River
by Global Ocean Associates
Prepared for the Office of Naval Research - Code 322PO
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Figure 2.  (Upper) A color contour time series of temperature profiles from the surface to 35m depth measured by
the LMP over a one-day period.  The 10°C span color contour scale is shown the right of the time series panel.  The
low frequency, semidiurnal internal tide displacement can clearly be seen along the yellow isotherm.  (Lower) A
profile time series of the first 1.7 hours of the time series shown in Figure 1a.  White areas indicate times with no
data.  [From Stanton and Ostrovsky, 1998]



2. Internal solitary waves: Ocean

Satellite view, Pacific North West
An Atlas of Oceanic Internal Solitary Waves (May 2002) Oregon Coast - Colombia River
by Global Ocean Associates
Prepared for the Office of Naval Research - Code 322PO
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Oregon Coast - Colombia River
with co-authors T. P. Stanton; Department of Oceanography, Naval Postgraduate School and
L. A. Ostrovsky CIRES, University of Colorado, NOAA ETL, CO 80303

Figure 1.  Radarsat-1 image of the Colombia River and Oregon coast showing internal waves.  The river plume
induces seaward propagating internal waves.  The shoreward propagating waves were generated at the coastal shelf
break.



3. Internal solitary waves: Ocean

Strait of Messina



4. Internal solitary waves: Ocean

Strait of Messina, satellite view

An Atlas of Oceanic Internal Solitary Waves (February 2004) Strait of Messina
by Global Ocean Associates
Prepared for Office of Naval Research – Code 322 PO

203

Figure 5.  ERS-1 (C-band VV) SAR image of the Strait of Messina acquired on 11
July 1993 at 0941 UTC (orbit 10387, frame 2835). The image shows internal wave
signatures radiating out of the strait in both the northern and southern directions.
Northwards propagating internal waves are less frequently observed than
southward propagating ones.  Imaged area is 65 km x 65 km.  ©ESA 1993.  [From
The Tropical and Subtropical Ocean Viewed by ERS SAR http://www.ifm.uni-
hamburg.de/ers-sar/]



5. Internal solitary waves: Ocean

Strait of Gibraltar satellite view

An Atlas of Oceanic Internal Solitary Waves (February 2004) Strait of Gibraltar
by Global Ocean Associates
Prepared for Office of Naval Research – Code 322 PO

190

Figure 12.  Astronaut photograph (STS41G-34-81) of Gibraltar region acquired on 11 October
1984 at 1222 UTC.  The image shows three packets of solitons to the east of Gibraltar.  Older
packets are visible along Spanish and Moroccan coasts.  [Image courtesy of Earth Sciences and
Image Analysis Laboratory, NASA Johnson Space Center (http://eol.jsc.nasa.gov)]



6. Internal solitary waves: Atmosphere

Morning Glory Waves



7. Internal solitary waves: Atmosphere

Satellite view of Morning Glory Waves

Morning Glory  Clouds - Australia



8. Internal solitary waves: Atmosphere

Satellite view of Mozambique waves



9. Internal solitary waves: Atmosphere

Sable Island, Canada
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10. Weakly nonlinear model

Typically internal solitary waves are long nonlinear waves.
Here we sketch the theory for the oceanic case.

The background state is the density ρ0(z) and horizontal
current u0(z), while the buoyancy frequency is given by

ρ0N
2 = −gρ0z . (1)

Then seek an asymptotic solution for the vertical particle
displacement ζ = ζ(x , z , t), based on the assumption that the
waves are long and weakly nonlinear.



11. Korteweg-de Vries (KdV) equation

In a uniform medium this is given asymptotically by
ζ ∼ η(x , t)φ(z), where

ηt + cηx + µηηx + ληxxx = 0 . (2){
ρ0(c − u0)2φz

}
z

+ ρ0N
2φ = 0 , for − h < z < η0 , (3)

φ = 0 at z = −h , (c − u0)2φz = gφ at z = η0 . (4)

The coefficients µ, λ are given by

Iµ = 3

∫ η0

−h
ρ0 (c − u0)2 φ3

z dz , Iλ =

∫ η0

−h
ρ0 (c − u0)2 φ2 dz ,

I = 2

∫ η0

−h
ρ0 (c − u0)φ2

z dz . (5)

The KdV equation (2) is integrable. We are concerned with
the undular bore solution, the outcome of a step-like initial
condition using the Whitham modulation equations.



12. Variable-coefficient KdV (vKdV) equation

Now suppose the depth h, and background current u0, density
ρ0 vary slowly in the horizontal direction with x . The KdV
equation (2) is replaced by a similar equation, but with two
extra terms,

ηt + cηx +
cQx

2Q
η + µηηx + ληxxx + ση = 0 , Q = c2I , (6)

Iσ = −
∫ η0

−h
φφzF0zdz , F0 = ρ0(u0u0x + w0u0z) + p0x . (7)

The modal equation now depends on x parametrically, that
is φ = φ(z ; x), c = c(x), and hence the coefficients µ, λ,Q
also depend (slowly) on x . In (7) p0 is the basic pressure, such
that p0z = −gρ0, and w0 is the basic vertical velocity such
that u0x + w0z = 0. The term ση arises when the basic state is
not a solution of the inviscid Euler equations.



13. Canonical vKdV equation

The “spatial” evolution form, asymptotically equivalent to (6),

A = Q1/2η , AT +
ν

Q1/2
AAX + δAXXX + σA = 0 . (8)

X =

∫ x

x0

dx

c
− t , T =

∫ x

x0

dx

c
, ν =

µ

c
, δ =

λ

c3
. (9)

A further transformation yields the canonical form

Uτ + αUUX + UXXX = 0 , (10)

where A = RU , R = exp (−
∫ τ

0

β dτ ′) ,

τ =

∫ T

0

δ dT , α =
Rν

δQ1/2
, β =

σ

δ
. (11)

R , α, β vary with τ . There are two conservation laws, (10) for
mass and wave action flux,

{U2}τ + {2αU3/3 + 2UUXX − U2
X}X = 0 . (12)



14. Solitary wave train

A modulated solitary wave is

Usol = a sech2(γθ)}+ d , θX = k , θτ = −kV , (13)

V − αd =
αa

3
= 4γ2k2 . (14)

with three parameters, the amplitude a, the pedestal d and
the wavenumber k . This is an exact solution if these
parameters are constant. Here, especially when α(τ) is slowly
varying, a, d , k are slowly varying. To find expressions for
that variation, we use the Whitham modulation theory,
developed for periodic waves, adapted for the solitary wave
train, where (13) is regarded as sitting on a periodic lattice. Or
one can use a direct multi-scale asymptotic expansion. Here
we use the Whitham approach, using (10) and (12) for mass
and wave action flux, together with the conservation of waves,

kτ + (kV )X = 0 . (15)



15. Solitary wave train

The outcome is
dτ + αddX = 0 , (16)

expressing conservation of mass. This is a Hopf equation for d
alone, and so d can be regarded as a known quantity.
Conservation of wave action leads to

Aτ + (αd +
αa

3
)AX +AαdX = 0 , A = {a

3

α
}1/2 . (17)

With d already determined, this is a nonlinear hyperbolic
equation for A alone, thus determining the amplitude a.
Conservation of waves is the third equation,

kτ + (kV )X = 0 , where V = αd +
αa

3
, (18)

can be regarded as known. This is a linear hyperbolic equation.



16: Undular bore

When α > 0 is a constant, an undular bore can be found as
an asymptotic solution of the KdV equation. This is an
expanding wave train connecting a zero level at the front to a
mean level U0 > 0. The leading wave is a solitary wave of
amplitude 2U0.
However, in a variable medium, α = α(τ), if an undular bore
retains its structure as a single-phase wave train, then the
jump U0 is preserved, and so then the leading solitary wave
would have a constant amplitude 2U0. But this is inconsisten
with the result that the leading solitary wave amplitude should
behave as |α|1/3. The resolution of this inconsistency is the
formation of a solitary wave train ahead of the undular
bore. This solitary wave train is described by (16, 17, 18),
and there is a region where the rear of the solitary wave train
interacts with the undular bore, forming a two-phase wave
interaction.



17: Simulations

Uτ + αUUX + UXXX = 0 ,

α = 1 + (αa − 1) tanh (Kτ) , α(τ = 0) = 1 α(τ →∞) = αa .

Either αa > 1 for propagation up a slope, or αa < 0 for
propagation up a slope and through a critical point of
polarity change where α = 0. The initial condition
U(X , 0) = Uic(X ) is a modulated cnoidal wave representation
of an undular bore in the constant coefficient KdV equation
evolving from a step of height U0 > 0, τ = τ1,

Uic(X ) = U0 ENV(X ){2mcn2(κ(X − V τ1);m) + 1−m} ,

−U0τ1 < X <
2U0τ1

3
, V =

U0

3
{1 + m} , U0 = 6κ2k2 ,

X =
U0τ1

3
{1 + m − 2m(1−m)K (m)

E (m)− (1−m)K (m)
} .

ENV(X ) is a box of height 1, containing the initial bore.



18: Simulation: Undular bore on a slope
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A simulation of the vKdV equation (10) when α(τ) varies
from 1 to 1.5 for the undular bore initial condition with
U0 = 6, τ1 = 5 and K = 0.3, τa = 10 (Kτa = 3); the left panel
is at α = 1 , the middle panel is at α = 1.25 and the right
panel is at α = 1.5.



19: Solitary wave train interpretation

For the leading waves, seek a similarity solution of (16, 17, 18),

dτ + αddX = 0 ,

Aτ + (αd +
αa

3
)AX +AαdX = 0 , A = {a

3

α
}1/2 .

kτ + (kV )X = 0 .

d = 0 , a =
3α1/3X

χ
> 0 , χ =

∫ τ

α4/3(τ ′) dτ ′ . (19)

This holds over the domain Xm(τ) < X < XM(τ) say. At the
head the amplitude is aM = 3α1/3XM/χ, and at the rear the
amplitude is am = 3α1/3Xm/χ. This must be matched to the
following undular bore to determine XM,m(τ). Note that if it is
assumed that the leading wave in the following undular bore
has amplitude 2U0 then we may expect that am ≈ 2U0 and
aM ≈ 2U0α

1/3, since initially α = 1.



20: Simulation of a polarity change for a single

solitary wave
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A simulation of the vKdV equation (10) when α(τ) varies from
1 to −1 for a solitary wave initial condition with U0 = 4
and K = 0.03, τa = 100 (Kτa = 3); the left panel is at α = 1 ,
the middle panel is at α = 0 and the right panel is at α = −1.
Note the solitary waves moving forward along the rarefaction.



21: Polarity change interpretation

There is a another similarity solution of (16, 17, 18) for this
case of polarity change, after the critical point,

dτ + αddX = 0 ,

Aτ + (αd +
αa

3
)AX +AαdX = 0 , A = {a

3

α
}1/2 .

kτ + (kV )X = 0 .

d =
X − X0

η
, η =

∫ τ

τc

α(τ ′) dτ ′ , X < X0 , (20)

a = −3|α|1/3X
ηξ

< 0 , ξ =

∫ η

−∞

|α(η′)|1/3 dη′

|η′|5/3
, (21)

Here α < 0 and so η < 0, ensuring that the rarefaction wave
d > 0 in X < X0. The determination of X0 requires a detailed
matching with the solution at the critical point, omitted here.



22: Polarity change interpretation

The rarefaction wave (20) can only extend to a point
X − X0 = −Lr (η) where Lr (η) is likewise undetermined. But
the mass of the rarefaction wave is then −L2r (η)/2η and
this can be approximately equated to the initial solitary
wave mass 2U0/κ = 2(12U0)1/2, thus giving an approximate
expression for Lr (η). The expression (21) for the solitary wave
amplitude a holds on the domain −Lr (η) < X − X0 < −Ls(η)
where the upper bound Ls(η) determines the amplitude of the
leading solitary wave, that is as = −3|α|1/3Ls/|η|5/3ξ. The
values of as , Ls are undetermined and requires matching with
the solution at the critical point. However, an approximate
estimate can be based on the assumption that since the
emerging solitary wave train is the leading edge of an undular
bore resolving the jump at the rear of the rarefaction wave,
and then as = 2Lr/η, where in turn Lr is estimated from
conservation of mass, as above.



23: Simulation: Polarity change for an undular

bore
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Figure: A simulation of the vKdV equation (10) when α(τ) varies
from 1 to −1 for the undular bore initial condition with
U0 = 6, τ1 = 5 and K = 0.3, τa = 10 (Kτa = 3); the left panel is
at α = 1 , the middle panel is at α = 0 and the right panel is at
α = −1.



24: Summary

dτ + αddX = 0 ,

Aτ + (αd +
αa

3
)AX +AαdX = 0 , A = {a

3

α
}1/2 ,

kτ + (kV )X = 0 , where V = αd +
αa

3
,

The solitary wave train equations are a very powerful tool for
analysing solitary waves and undular bores in variable media,
especially because they are each hyperbolic equations which
can be solved in sequence for d ,A, k .

Although developed here for the KdV equation, I expect they
can be found for other nonlinear wave equations.
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