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A: Variable-coefficient Korteweg-de Vries equation

The depth h, and the background current ug, density po vary
slowly in the horizontal direction with x. Then the vertical
particle displacement is { ~ n(x, t)¢(z; x) where
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{po(c — uo)® gbz}z —gpoz¢p =0, for —h<z<nn,
¢=0 at z=—h, (c—uw)p.=g¢ at z=1p.
The coefficients i, A\, Q, o are given by
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B. Canonical vKdV equation

The “spatial” evolution form is
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A further transformation yields the canonical form

Ur + aUUx + Uxxx =0,

where A= RU, R:exp(—/ pdr'),
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R, o, B vary with 7. There are two conservation laws, the
vKdV equation for mass and wave action flux,

{U2}7— + {2aU3/3 + 2UUXX — U)2<}x =0.

AAx 4+ 0Axxx +0cA =0.



C: Solitary wave train

A modulated solitary wave train is
Uso) = asechz(’ye)} +d, Ox=k, 0.=-—kV,
V—ad:%a:wk?
with three parameters, the amplitude a, the pedestal d and
the wavenumber k. The modulation equations are
d, + addx =0,

expressing conservation of mass. Hence d can be regarded as
a known quantity. Conservation of wave action leads to
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This is a nonlinear hyperbolic equation for A alone.
Conservation of waves is the third equation,
k. +(kV)x =0, where V =ad+
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D: Solitary wave train similarity solutions

« > 0 Development of undular bore:
3al/3X

>0, X:/ o*3(r) dr’ .
X 0

This holds over the domain X,(7) < X < Xu(7) say. At the
head the amplitude is ap = 303X/, and at the rear the
amplitude is a,, = 3a/3X,,/x.

a < 0 Rarefaction wave with following undular bore:

d=0, a=

X — X T
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Since a < 0, 7 < 0, ensuring that the rarefaction wave
d>0,a<0in X < Xp.



1. Internal solitary waves: Ocean

Internal tide and solitary waves, Pacific North West

Orcgon Coast - Colombia River

Figure 2. (Upper) A color




Internal solitary waves: Ocean

Satellite view, Pacific North West

Oregon Coast - Colombia River

Oregon Coast - Colombia River

with co-authors T. P. Stanton; Department of Oceanography, Naval Pougmdum School and
L. A. Ostrovsky CIRES, University of Colorado, NOAA ETL. CO 8030:

Columbia River Estuary Plume
RADARSAT-1 Standard Mode ey §
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Figure 1. Radarsat-1 image of the Colombia River and Oregon coast showing intemal waves. The river plume.
induces seaward propagating interal waves. The shoreward propagating waves were generated at the coastal shelf
ak.



3. Internal solitary waves: Ocean

Strait of Messina
STRAIT OF MESSINA
October 25, 1995
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start time: 15:50 UTC
position: 38.305 N 15.752 E

end time: 16:14 UTC
position: 38.281 N 15.722 E

ship speed (m/s): 2.5
ship heading (degrees): 225

MAX. NORTHWARD TIDAL FLOW: 16:02 UTC




Internal solitary waves: Ocean

Strait of Messina, satellite view

Figure 5. ERS-1 (C-band V'V) SAR image of the Strait of Messina aquired on 11
July 1993 at 0941 UTC (orbit 10387, frame 2835). The image shows internal wave
signatures radiating out of the strait in both the northern and southen directions.
Northwards propagating intermal waves are less frequently observed than
southward propagating ones. Imaged area is 65 km x 65 km. DESA 1993. [From
“The Tropical and Subtropical Ocean Viewed by ERS SAR hitp:/www.fin uni-
hamburg,defers-sar/]



5. Internal solitary waves: Ocean

Strait of Gibraltar satellite view
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6. Internal solitary waves: Atmosphere

Morning Glory Waves




7. Internal solitary waves: Atmosphere

Satellite view of Morning Glory Waves
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8. Internal solitary waves: Atmosphere

Satellite view of Mozambique waves
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MODIS TERRA image Mozambique channel (16 AUG 2002)



9. Internal solitary waves: Atmosphere

Sable Island, Canada




10. Weakly nonlinear model

Typically internal solitary waves are long nonlinear waves.
Here we sketch the theory for the oceanic case.

I

x,z=h

The background state is the density po(z) and horizontal
current ug(z), while the buoyancy frequency is given by

poN* = —gpo. . (1)

Then seek an asymptotic solution for the vertical particle
displacement ( = ((x, z, t), based on the assumption that the
waves are long and weakly nonlinear.



11. Korteweg-de Vries (KdV) equation

In a uniform medium this is given asymptotically by
¢ ~n(x, t)p(z), where

Ne + Cix + 1 + Ao = 0. (2)

{po(c - U0)2¢z}z +poN?p =0, for —h<z<ung, (3)

¢p=0 at z=—h, (c—w)¢,=g¢p at z=1n. (4)
The coefficients i, A are given by
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The KdV equation (2) is integrable. We are concerned with
the undular bore solution, the outcome of a step-like initial
condition using the Whitham modulation equations.



12. Variable-coefficient KdV (vKdV) equation

Now suppose the depth h, and background current ug, density
po vary slowly in the horizontal direction with x. The KdV
equation (2) is replaced by a similar equation, but with two
extra terms,

CWx
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The modal equation now depends on x parametrically, that
is ¢ = ¢(z; x), c = c(x), and hence the coefficients u, A, @
also depend (slowly) on x. In (7) po is the basic pressure, such
that pp, = —gpo, and wy is the basic vertical velocity such
that ugx + wp, = 0. The term o arises when the basic state is
not a solution of the inviscid Euler equations.



13. Canonical vKdV equation

The “spatial” evolution form, asymptotically equivalent to (6),

A=QY%, Ar+ ﬁAAX +6Axx +0A=0. (8)

xz/ &y T:/ N )

3
, € x C c c

A further transformation yields the canonical form

U+ aUUx + Uxxx =0, (10)
where A= RU, R:exp(—/ pdr'),
0
T Rv o
T:A 50’7—, a:501/27 ﬁ:g (11)

R, av, B vary with 7. There are two conservation laws, (10) for
mass and wave action flux,

{U?}, + {2aU3?/3 4+ 2UUxx — Ux}x = 0. (12)



14. Solitary wave train

A modulated solitary wave is
Ut = asech®’(v0)} +d, Ox =k, 0,=—kV, (13)
V—ad= oz?a = 42K (14)

with three parameters, the amplitude a, the pedestal d and
the wavenumber k. This is an exact solution if these
parameters are constant. Here, especially when o(7) is slowly
varying, a, d, k are slowly varying. To find expressions for
that variation, we use the Whitham modulation theory,
developed for periodic waves, adapted for the solitary wave
train, where (13) is regarded as sitting on a periodic lattice. Or
one can use a direct multi-scale asymptotic expansion. Here
we use the Whitham approach, using (10) and (12) for mass
and wave action flux, together with the conservation of waves,

ke + (kV)x = 0. (15)



15. Solitary wave train

The outcome is
dT + dedx = 0, (16)

expressing conservation of mass. This is a Hopf equation for d
alone, and so d can be regarded as a known quantity.
Conservation of wave action leads to

3
aa a
A + (ad + ?)Ax +Aadx =0, A= {5}1/2 . (17)
With d already determined, this is a nonlinear hyperbolic
equation for A alone, thus determining the amplitude a.
Conservation of waves is the third equation,

k, +(kV)x =0, where V:ozd—i—%a, (18)

can be regarded as known. This is a linear hyperbolic equation.



16: Undular bore

When o > 0 is a constant, an undular bore can be found as
an asymptotic solution of the KdV equation. This is an
expanding wave train connecting a zero level at the front to a
mean level Uy > 0. The leading wave is a solitary wave of
amplitude 2U,.

However, in a variable medium, o = «(7), if an undular bore
retains its structure as a single-phase wave train, then the
jump U, is preserved, and so then the leading solitary wave
would have a constant amplitude 2U,. But this is inconsisten
with the result that the leading solitary wave amplitude should
behave as |a|'/3. The resolution of this inconsistency is the
formation of a solitary wave train ahead of the undular
bore. This solitary wave train is described by (16, 17, 18),
and there is a region where the rear of the solitary wave train
interacts with the undular bore, forming a two-phase wave
interaction.



17: Simulations

UT + CYUUX + UXXX = 07
a=1+(a,—1)tanh(K7), a(tr=0)=1 a(r — ) = a,.
Either o, > 1 for propagation up a slope, or a; < 0 for
propagation up a slope and through a critical point of
polarity change where o = 0. The initial condition
U(X,0) = Ui(X) is a modulated cnoidal wave representation
of an undular bore in the constant coefficient KdV equation
evolving from a step of height Uy > 0, 7 = 73,

Uie(X) = U ENV(X){2mcn?(5(X — V11); m) +1 — m},

2
—Upry < X < Ugﬁ, V:%{l—l—m}, Up = 6K%K?
Uoy 2m(1 — m)K(m)

X =

1 — )
3 L m = E —a= mK(m)!
ENV(X) is a box of height 1, containing the initial bore.



18: Simulation: Undular bore on a slope
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A simulation of the vKdV equation (10) when «(7) varies
from 1 to 1.5 for the undular bore initial condition with
Upo=6,71 =5and K =0.3,7, = 10 (K7, = 3); the left panel
is at « = 1, the middle panel is at & = 1.25 and the right
panel is at a = 1.5.



19: Solitary wave train interpretation

For the leading waves, seek a similarity solution of (16, 17, 18),

d. + addx =0,

aa a 12
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k + (KV)x =0.
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This holds over the domain X,(7) < X < Xu(7) say. At the
head the amplitude is ap = 303Xy, /x, and at the rear the
amplitude is a,, = 3a/3X,,/x. This must be matched to the
following undular bore to determine Xy (7). Note that if it is
assumed that the leading wave in the following undular bore
has amplitude 2U, then we may expect that a,, =~ 2U, and

ay ~ 2Upa/3, since initially o = 1.

d=0, a




20: Simulation of a polarity change for a single

solitary wave
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A simulation of the vKdV equation (10) when «(7) varies from
1 to —1 for a solitary wave initial condition with Uy = 4
and K =0.03, 7, = 100 (K7, = 3); the left panel isat a =1,
the middle panel is at & = 0 and the right panel is at a = —1.
Note the solitary waves moving forward along the rarefaction.



21: Polarity change interpretation

There is a another similarity solution of (16, 17, 18) for this
case of polarity change, after the critical point,

d. + addx =0,

AT+(ad+%a)Ax+AadX:O, A= { sz

ke + (kV)x = 0.
X — X T
d= ; 0, 7]:/ a(r)dr, X <X, (20)
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Here @ < 0 and so n < 0, ensuring that the rarefaction wave
d > 0in X < Xy. The determination of Xy requires a detailed
matching with the solution at the critical point, omitted here.



22: Polarity change interpretation

The rarefaction wave (20) can only extend to a point

X — Xo = —L,(n) where L,(n) is likewise undetermined. But
the mass of the rarefaction wave is then —L2(n)/2n and
this can be approximately equated to the initial solitary
wave mass 2U/k = 2(12Up)*/?, thus giving an approximate
expression for L,(n). The expression (21) for the solitary wave
amplitude a holds on the domain —L,(n) < X — Xy < —Ls(n)
where the upper bound L4(7) determines the amplitude of the
leading solitary wave, that is a, = —3|a|Y/3L,/|n|>/3¢. The
values of a, L are undetermined and requires matching with
the solution at the critical point. However, an approximate
estimate can be based on the assumption that since the
emerging solitary wave train is the leading edge of an undular
bore resolving the jump at the rear of the rarefaction wave,
and then ag = 2L, /n, where in turn L, is estimated from
conservation of mass, as above.



23: Simulation: Polarity change for an undular

bore
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Figure: A simulation of the vKdV equation (10) when «(7) varies
from 1 to —1 for the undular bore initial condition with
Up=6,71 =5and K =0.3,7, = 10 (K7, = 3); the left panel is
at « =1, the middle panel is at & = 0 and the right panel is at
a=—1



24: Summary

d. +addy =0,
3
A, + (ad + ?)Ax +Aadx =0, A= {%}1/2a

k. + (kV)x =0, where vz@d+%3,

The solitary wave train equations are a very powerful tool for
analysing solitary waves and undular bores in variable media,
especially because they are each hyperbolic equations which
can be solved in sequence for d, A, k.

Although developed here for the KdV equation, | expect they
can be found for other nonlinear wave equations.
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