Impact of reduced sea ice conditions in the Barents-Kara Seas on wintertime Euro-
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Scientific Goal Experimental Set-up Results: Response to sea ice loss in the BKS
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FIGURE 4: Response to reduced sea ice conditions in the BKS (a) from November to
February in ICE-FREE averaged across all members (230): 2m-temperature (b),

Tool: A seasonal prediction system
geopotential height at 500m (c) and zonal wind at 250 hPa (d).
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The impact of sea ice extent (SIE)
anomalies is studied performing
initialized ensemble forecasts of boreal
winter seasons (November to April) using

Outcomes & Outlook

* The same heat supply to the upper ocean layer results in different amounts of
sea removal for each year, depending on the sea ice cover at the beginning of
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