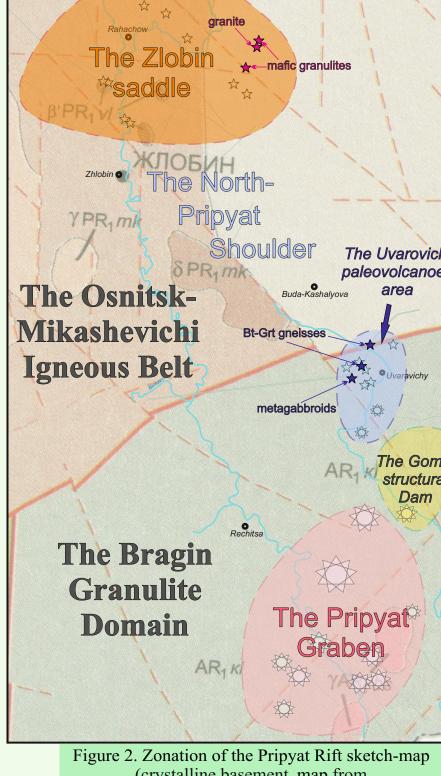


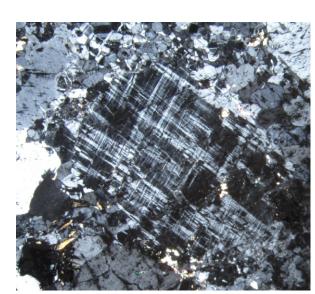
3. METHODS 1. INTRODUCTION The xenolith rock samples were analyzed for major elements by XRF at IGEM on a PW-2400 (Philips Analytical B.V.) spectrometer. Trace elements were analyzed by ICP-MS at the Institute of Problems of Technologies of Microelectronics and Extrapure Materials, Russian Academy of Sciences. The samples (1) biotite-garnet gneisses were decomposed in acids in an autoclave. The chemical yield during decomposition was controlled by (2) garnet-clinopyroxene plagiogneisses (mafic granulites) adding ¹⁶¹Dy, ¹⁴⁶Nd and ¹⁷⁴Yb. Analysis accuracy was controlled by measurements of the GSP-2 standard. (3) metagabbroids Minerals were analyzed in thin sections on a JEOL JSM-6480LV scanning electron microscope with (4) granites energy-dispersive spectrometer INCA Energy 350 at the Laboratory of Local Analytical Methods, Geology Department, Moscow State University, and at the Laboratory for the Analysis of Minerals at the Institute of the Geology of Ore Deposits, Petrography, Mineralogy, and Geochemistry (IGEM), Russian Academy of Sciences, on an JXA-8200 (Jeol) microprobe equipped with five wave-dispersive (1) the Osnitsk-Mikashevichi Igneous belt - for the Zlobin field (rift marginal zone) and one energy-dispersive spectrometers. (2) the Bragin Granulite Domain - for the Uvarovichi paleovolcanoes area (intermediate rift zone) and southeastwards (Makhnach et al., 2001). (1) new precise isotope and geochemical data acquisition for the xenoliths (2) P/T estimations for the xenoliths (3) assessment of rock sources and protoliths (4) development of our understanding of crystalline basement structures beneath the Pripyat rift Figure 3. Drill core samples of the xenoliths 4. PETROGRAPHY 2. GEOLOGICAL SETTING (porphyroblastic): Afs (50%), PI (15%), Grt (25%), Bt (10%), minor Qz, Gr, accessory Zrn, Ap, Rt, Mnz, secondary Chl, Cal, Dol, Py. **Biotite-garnet gneisses** Type 2 (heteroblastic): Afs (10-20%), PI (40-50%), Grt (20%), Bt (20%), accessory Zrn, Ap, Ilm, secondary Chl, Py, Cb. **Garnet-clinopyroxene plagiogneisses** Heteroblastic texture, PI (50-60%), Cpx (20-30%), Grt (10-15%), minor Afs, Bt, Amp, Scp, accessory Ap, Ilm, Mag, Ti-Mag, Py, Ccp, (mafic granulites) Rt, secondary Chl, Cb. The Zlobin PI (70-80%), Bt (5%), completely altered unknown Metagabbroids mineral (amphibole? pyroxene?), accessory Ap, Ilm, Mag, Ti-Mag, saddle Pv. Ccp. Rt. Zrn, secondary Chl, Cb, Kfs ne North The Uvarovichi paleovolcanoes The Osnitskarea Mikashevichi **Bt-Grt gneisses Igneous Belt** • Uvaravichy Magnetite, Ti-magnetite, ilmenite & rutile. BSE image. Plaqioclase & biotite. Zoom 5x. XPL image. Plagioclase & altered mineral. Zoom 5x. XPL image. Ophitic texture. Zoom 5x. XPL image. 0 50 100 200 30 kr Granite a b c 2 ////// 3 3 4 5 Inequigranular texture, Afs (Mc) (50%), PI (15%), Qz (30%) Bt (5%), The Gomel minor Cb, accessory Spn, Ap, Zrn, Mag, Py, Ccp. structural (modified after Bogdanova et al., 2016): pproximately 2.1-2.0 Ga in the East Voronezh accretionary orogen; The Bragin Paleoproterozoic crust: (a, b) continental crust: (a) dated at 2.3-2.1 Ga, (b) dated at 2.0-1.95 Ga, (c) oceanic crust dated at 2.0-1.95 Ga; Granulite


The Pripyat rift is the north-western part of the Pripyat-Dnieper-Donets Rift System. Devonian igneous rocks from the Pripyat rift contain several types of crustal xenoliths: Host rocks are alkaline ultramafic lamprophyres, alkaline picrites, picrobasalts, alkaline basalts and trachytes. They intruded the crystalline basement structures of the East European Craton in the area of the Fennoscandia–Sarmatia junction zone: The main reasons of our study are: The Pripyat rift crosses from NW to the SE two crustal domains: the Osnitsk-Mikashevichi Igneous Belt (OMIB), and the Bragin Granulite Domain. The OMIB contains large granodioritic, granitic, gabbroic and dioritic plutons, which are weakly deformed and metamorphosed, and subordinate meta-basaltic, meta-andesitic and meta-rhyolitic volcanic and dyke rocks of Palaeoproterozoic age. It is considered by Aksamentova & Tolkachikova (2012) as a magmatic province formed during 2.1–1.7 Ga and associated with the development of the middle-Palaeoproterozoic deep faults of SE strike. According to (Bogdanova et al., 2016; Shumlyanskyy, 2014), the OMIB is a suture zone of 2.0-1.95 Ga age with traces of Andean-type magmatism, denoting Fennoscandia-Sarmatia Junction Zone. The Bragin Granulite Domain contains metasedimentary granulite-facies rocks and migmatites with subordinate minor bodies of mafic rocks (Kuzmenkova et al., 2015). It is attributed by Aksamentova & Tolkachikova (2012) to the Archaean, whereas Bogdanova et al. (2016) consider it as analogue and continuation of the Teterev series of the Ukrainian Shield of Palaeoproterozoic age (between ca. 2.2 and 2.1 Ga). In addition, the OMIB contains younger, ca. 1.8-1.74 Ga, mostly syenitic to quartz syenitic intrusions, which are associated with the coeval AMCG-type Korosten Pluton farther south. Figure 1. Zonation of Sarmatian segment of the East European Platform (1) Archean crust: (a) dated at 3.8-2.7 Ga, (b) 3.2-2.7 Ga, (c) recycled at (3) Collision sutures, 2.05-2.0 Ga (numerals: 1 - Golovanevskaya, 2 - Krivoi

Rog-Kremenchug, 3 - Orekhovo-Pavlograd) (4) Areas with Devonian magmatic rocks: 1 - Zhlobin saddle, 2 - Pripyat graben,

3 - Bragin–Chernigov block; 4 - Dnieper depression; 5 - Belotserkovka block; 6 - southwestern Donets Basin in the junction zone with the Azov crystalline massif; 7- eastern Azov area; 8 - Voronezh Crystalline Massif. (I) Podolian block; (II) Azov-Kursk block; (III) Sumy-Central Dnieper block; (V) eastern Sarmatian orogen; (V) Ingul-Sevsk block; (VI) Volga-Donets orogen. (5) AMCG and alkaline plutons, and related volcanic-sedimantary basins

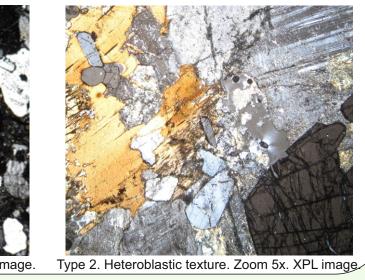
(1.80-1.74 Ga).

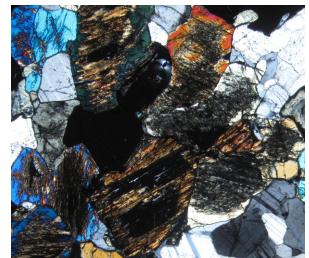


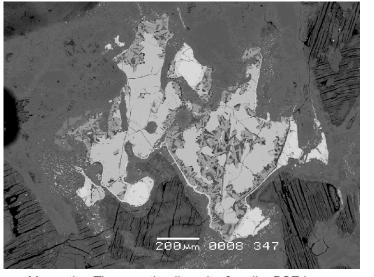
(crystalline basement map from Aksamentova N. V., Tolkachikova, 2012)

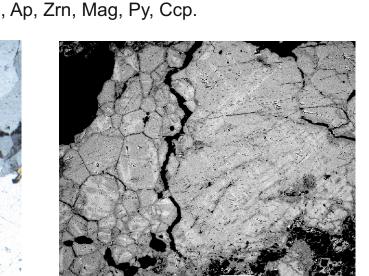
Crustal xenoliths from Devonian igneous rocks of the Pripyat rift: mineralogical and geochemical features and their relation to the Fennoscandia–Sarmatia Junction Zone

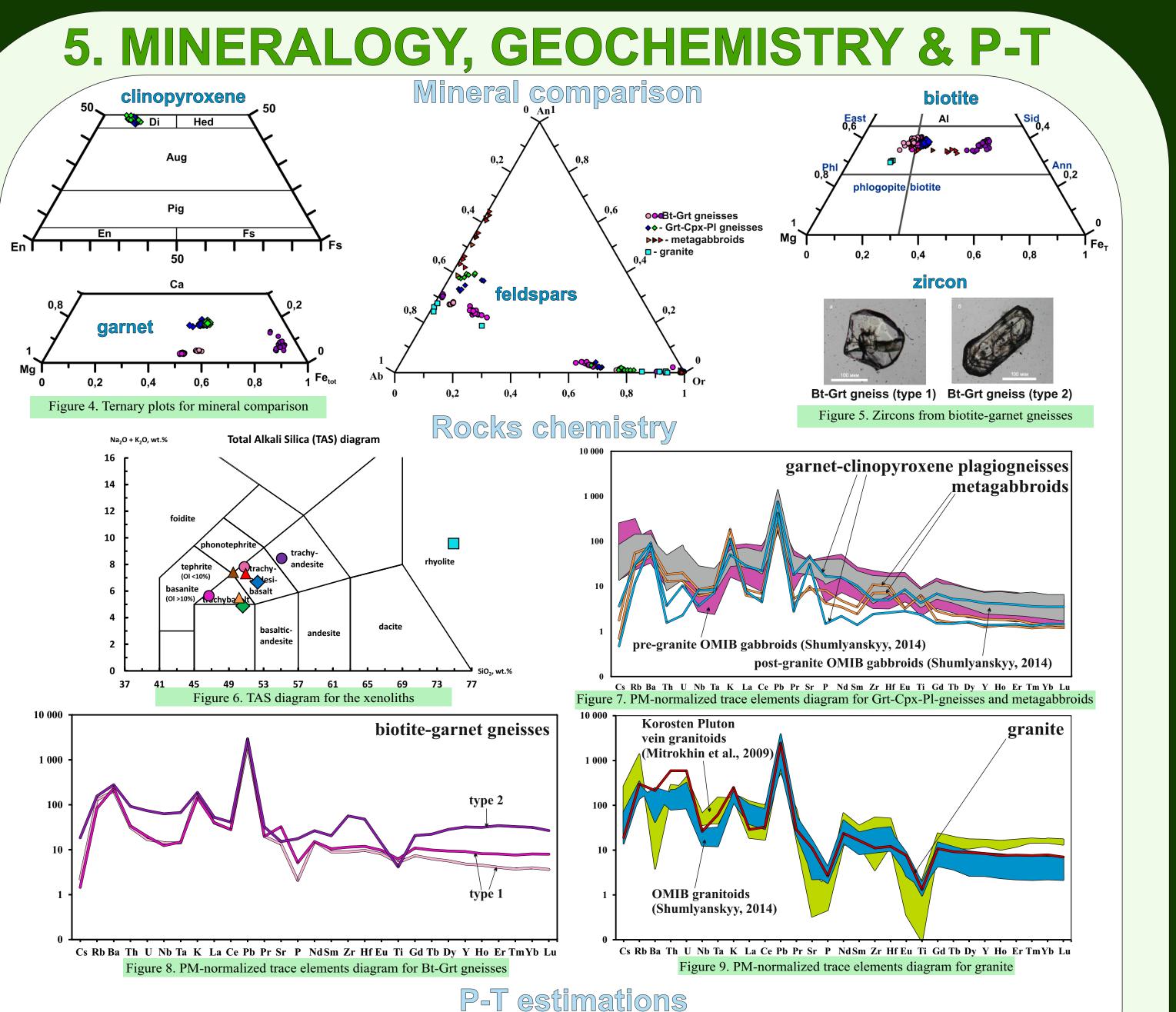
Galina Volkova¹, Evgenia Yutkina², Anna Nosova², and Ludmila Sazonova¹ ¹Lomonosov Moscow State University, the Faculty of Geology, Petrology Department, Russian Federation, ²Institute of Geology of Ore Deposits, Petrography, Mineralogy and Geochemistry, Russian Federation


Sphene, guartz, feldspars. Zoom 5x. XPL image.




Inequigranulal texture. Zoom 5x. XPL image.


Biotite and quartz. Zoom 10x. XPL image.



Microcline grains. BSE image.

For biotite-garnet gneisses of type 1 our estimations show 842-888 °C by Grt-Bt equilibrium (Berman, Aranovich, 1996) and 847-893 °C by ternary feldspar solvus geothermometry (Wen, Nekvasil, 1994). For biotite-garnet gneisses of type 2 we obtained 575-628 °C by Grt-Bt equilibrium and 510-576 °C by ternary feldspar geothermometry. Pressure for the rocks of the Bragin Granulite Domain (Kulazhin series) was defined by A.A. Tolkachikova (1999) as 8-9 kbar. For garnet-clinopyroxene plagiogneisses our estimations show 670 °C and 1 GPa by Grt-Cpx-Pl-Qz equilibria (Newton, Perkins, 1982) and 775-791 °C by ternary feldspar geothermometry. Previous researchers obtained for similar rocks 700-800 °C and 0.9-1.1 GPa (Markwick et al., 2001). For **metagabbroids** we obtained 773 °C, 847 °C and 1067 °C by titanomagnetite-ilmenite equilibrium (Sauerzapf et al., 2008).

6. CONCLUSIONS

Thereby the studied xenoliths have diverse protoliths, sources and P-T parameters. Biotite-garnet gneisses most likely belong to the Bragin Granulite Domain, gneisses of type 1 are similar to the metasedimentary granulitefacies rocks of the Kulazhin series, and gneisses of type 2 are probably migmatites. Garnet-clinopyroxene plagiogneisses are thought to be related to mafic granulites of the OMIB as assumed in (Markwick et al., 2001). Metagabbroid xenolithes are probably related to the basic rocks of the OMIB too. Granite xenolith trace elements pattern is closer to OMIB granitoids patterns than to the Korosten Pluton patterns, so it is far more likely that this xenolith is derived from the OMIB.

(1) Aksamentova N.V., Tolkachikova A.A., 2012. Petrography and geochemistry of Belarus crystalline basement (2) Bogdanova, S.V., Gorbatschev, R., and Garetsky, R.G., 2016. EUROPE/East European Craton, Reference Module in Earth Systems and Environmental Sciences. Elsevier, 18 p. (3) Berman, R.G., and Aranovich, L.Y. Optimized standard state andmixing properties of minerals: I. Model calibration for olivine, orthopyroxene, cordierite, garnet, and ilmenite in the system FeO-MgO-CaO-Al₂O₃-SiO₂-TiO₂ // Contributions to Mineralogy and Petrology.-1996.-V. 126.-P. 1-24.

- (4) Kuzmenkova O., Ryborak M., Tolkachikova A., Taran L., Al'bekov A., Levy M. Monzogabbro "Uborok" of the south-east of Belarus (Voronezh crystalline massif) // Alkaline Magmatism of the Earth and Related Strategic Metal Deposits. Proceedings of XXXII International Conference. Apatity 7-14 August 2015, Editor-in-chief L.N. Kogarko. M.: GEOKHI RAS, 2015. P. 64-65. (5) Makhnach A. S., Garetskij R. G., Matveev A. V. (eds), 2001. Geology of Belarus. Institut Geologicheskikh Nauk NAN Belarusi, Minsk, 815 pp.
- (6) Markwick A.J.W., Downes H., Veretennikov N., 2001. The lower crust of SE Belarus: petrological, geophysical and geochemical constraints from xenoliths. Tectonophysics 39, 215-237. (7) Mitrokhin A.V., Bogdanova S.V., Bilan E.V., 2009. Petrology of Malin rapakivi granite massif (Korosten Pluton, Ukraine). Mineral. Journ. (Ukraine) 31, 2, 66-82. (8) Newton, R. C., Perkins, III, D., 1982. Thermodynamic calibration of geobarometers based on the assemblages garnet-plagioclase-orthopyroxene (clinopyroxene)-quartz. American Mineralogist 67, 203-222.
- (9) Sauerzapf U., Lattard D., Burchard M., Engelmann R., 2008. The Titanomagnetite-Ilmenite Equilibrium: New Experimental Data and Thermo-oxybarometric Application to the Crystallization of Basic to Intermediate Rocks. Journal of Petrology 49(6), 1161-1185.
- (10) Shumlyanskyy L.V., 2014. Geochemistry of rocks from the Osnitsk-Mikashevichy volcano-plutonic belt of the Ukrainian Shield. Geochem. 11, 972–985. (11) Tolkachikova A.A., 1999. Aluminous rocks of the Kulazhin series in the basement of the Pripyat Trough. Litasphera 10-11, 86-90. (12) Wen S, Nekvasil H., 1994. SOLVALC: An interactive graphics program package for calculating the ternary feldspar solvus and for two-feldspar geothermometry. Computers & Geosciences. 20: 1025-1040.

Acknowledgements

We thank Alla Laptsevich and Oksana Kuzmenkova for provision with rock samples for the research, Alexev Kargin and Natalia Lebedeva for assistance and feedback. Special thanks to Elena Kovalchuk for microprobe analysis of our samples and to Alexey Leksin for printing this poster. This project was funded by Russian Foundation for Basic Research grant No.17-05-00534.

References

Contacts Galina Volkova earlinndrow@gmail.com Evgenia Yutkina eyutkina@gmail.com Anna Nosova <u>nosova@igem.ru</u> Ludmila Sazonova <u>sazonovalv52@mail.ru</u>

