AS1.7
Subseasonal-to-Seasonal (S2S) Prediction: meteorology and impacts
Co-organized as CL2.06.2
Convener: Francesca Di Giuseppe | Co-conveners: Daniela Domeisen, A.G. Muñoz, Adrian Tompkins, Frederic Vitart
Orals
| Thu, 11 Apr, 08:30–12:30, 14:00–15:45
 
Room 0.11
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X5

The WMO World Weather Research Programme (WWRP)–World Climate Research Programme (WCRP) Sub-seasonal to Seasonal (S2S) Prediction Project has the goal of improving forecast skill of the 2 week to 2 month lead time range and now provides research communities with unprecedented access to a comprehensive database of forecasts and hindcasts from a large number of forecasting centres from across the globe.

This session invites contributions that span all aspects of S2S meteorological, hydrological and oceanographic prediction, including impacts studies that may or may not make use of the S2S databases.

Specifically we welcome contributions that focus on phenomena such as

- The Madden Julian Oscillation (MJO)
- Tropical/extra-Tropical waves
- Stratospheric variability and stratosphere -troposphere coupling
- Predictability and skill of atmospheric or surface variables
- Transition of weather regimes
- Case studies of extreme weather events on the S2S scale

Contributions regarding impacts studies at the S2S time-range are also highly welcome, including the areas of water management (e.g floods, drought), health (vector-borne diseases, heat waves, air quality) and security (fires), agriculture and energy. These can include modelling studies of the impacts through to presentations of how S2S-derived information can be integrated into decision support systems at the local, regional and country level.

*********** UPDATE ********************

Solicited talks:

Dr Andrea Manrique-Suñén from Barcelona Supercomputer Centre (BSC) will talk about the S2S4E project which aims to bring sub-seasonal to seasonal climate predictions to the renewable energy sector. To illustrate the potential benefits of S2S predictions the S2S4E projects have analysed several case studies, i.e. periods pointed out by the energy companies as having an unusual climate behavior that affected the energy market. Two of these case studies show how the climate predictions of each event would have helped stakeholders to take precautionary actions several weeks ahead.

Dr Andrew Robertson from Columbia University will give a review of the status of the S2S project, and show some examples of the sub-seasonal forecast products which have been developed at IRI