Union-wide
Side Events
Disciplinary Sessions
Inter- and Transdisciplinary Sessions

Session programme

NH

NH – Natural Hazards

Programme group chairs: Michel Jaboyedoff, Alberto Armigliato, Mário Pereira, Heidi Kreibich, Antonio Parodi, Antonella Peresan, Giorgio Boni, Ira Didenkulova, Paolo Tarolli, Paolo Ciavola, Robin Crockett, Paraskevi Nomikou

MAL25/NH
Plinius Medal Lecture by Philip J. Ward
Conveners: Giorgio Boni, Ira Didenkulova
Abstract
| Tue, 09 Apr, 17:00–18:00
 
Room L6
MAL29/NH
Sergey Soloviev Medal Lecture by Kyoji Sassa
Conveners: Giorgio Boni, Ira Didenkulova
Abstract
| Thu, 11 Apr, 10:45–11:45
 
Room L6
MAL38/NH ECS
NH Division Outstanding ECS Lecture by Jadranka Šepić
Conveners: Giorgio Boni, Ira Didenkulova
Abstract
| Thu, 11 Apr, 15:15–15:45
 
Room 1.61
DM14/NH ECS
Division meeting for Natural Hazards (NH)
Conveners: Giorgio Boni, Ira Didenkulova
Tue, 09 Apr, 12:45–13:45
 
Room L6

NH1 – Hydro-Meteorological Hazards

NH1.1

Today, it is almost certain that global climate change will affect the frequency and severity of extreme meteorological and hydrological events. It is necessary to develop models and methodologies for the better understanding, forecasting, hazard prevention of weather induced extreme events and assessment of disaster risk. This session considers extreme events that lead to disastrous hazards induced by severe weather and climate change. These can, e.g., be tropical or extratropical rain- and wind-storms, hail, tornadoes or lightning events, but also floods, long-lasting periods of drought, periods of extremely high or of extremely low temperatures, etc. Papers are sought which contribute to the understanding of their occurrence (conditions and meteorological development), to assessment of their risk and their future changes, to the ability of models to reproduce them and methods to forecast them or produce early warnings, to proactive planning focusing to damage prevention and damage reduction. Papers are also encouraged that look at complex extreme events produced by combinations of factors that are not extreme by themselves. The session serves as a forum for the interdisciplinary exchange of research approaches and results, involving meteorology, hydrology, hazard management and/or applications like insurance issues.

Share:
Co-organized as AS1.15/HS4.1.5
Convener: Athanasios Loukas | Co-conveners: Maria-Carmen Llasat, Uwe Ulbrich
Orals
| Fri, 12 Apr, 08:30–12:30, 14:00–15:45
 
Room L6
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X3
NH1.2 Media

Lightning is the energetic manifestation of electrical breakdown, occurring after charge separation processes operating on micro and macro-scales, leading to strong electric fields within thunderstorms. Lightning is associated with severe weather, torrential rains and flash floods. It has significant effects on various atmospheric layers and drives the fair-weather electric field. It is a strong indicator of convective processes on regional and global scales, potentially associated with climate change. Thunderstorms and lightning are also associated to the production of energetic radiation up to tens of MeV on time scales from sub-millisecond (Terrestrial Gamma-ray Flashes) to tens of seconds (gamma-ray glows).

This session seeks contributions from research in atmospheric electricity on:

Atmospheric electricity in fair weather and the global electrical circuit
Atmospheric chemical effects of lightning and LtNOx
Middle atmospheric Transient Luminous Events
Energetic radiation from thunderstorms and lightning.
Remote sensing of lightning from space and by lightning detection networks
Results from the Atmosphere-Space Interaction Monitor (ASIM) mission.
Thunderstorms, flash floods and severe weather
Lightning and climate
Modeling of thunderstorms and lightning
Now-casting and forecasting of thunderstorms
New airborne and ground-based observation techniques

Share:
Co-organized as AS1.29, co-sponsored by AGU-ASE
Convener: Yoav Yair | Co-conveners: R.Giles Harrison, Martino Marisaldi, Serge Soula, Yukihiro Takahashi
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–18:00
 
Room L6, Thu, 11 Apr, 08:30–10:15
 
Room L6
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X3
NH1.3

High-impact climate and weather events typically result from the interaction of multiple hazards across various spatial and temporal scales. These events, also known as Compound Events, often cause more severe socio-economic impacts than single-hazard events, rendering traditional univariate extreme event analyses and risk assessment techniques insufficient. It is therefore crucial to develop new methodologies that account for the possible interaction of multiple physical drivers when analysing high-impact events. Such an endeavour requires (i) a deeper understanding of the interplay of mechanisms causing Compound Events and (ii) an evaluation of the performance of climate/weather, statistical and impact models in representing Compound Events.
The European COST Action DAMOCLES together with the EU H2020 ANYWHERE project will coordinate these efforts by building a research network consisting of climate scientists, impact modellers, statisticians, and stakeholders. This session creates a platform for this network and acts as an introduction of the work related to DAMOCLES and ANYWHERE to the research community. We therefore invite papers studying Compound Events and addressing the following topics representing the five working groups of DAMOCLES and Work Package 2 of ANYWHERE working on multi-hazard impacts..

Synthesis and Analysis: What are common features for different classes of Compound Events? Which climate variables need to be assessed jointly in order to address related impacts? How much is currently known about the dependence between these variables?
Stakeholders and science-user interface: Which events are most relevant for stakeholders? What are novel approaches to ensure continuous stakeholder engagement?
Impacts: What are the currently available sources of impact data? How can they be used to link observed impacts to climate and weather events?
Statistical approaches, model development and evaluation: What are possible novel statistical models that could be applied in the assessment of Compound Events?
Realistic model simulations of events: What are the physical mechanisms behind different types of Compound Events? What type of interactions result in the joint impact of the hazards that are involved in the event? How do these interactions influence risk assessment analyses?

Share:
Co-organized as AS4.49
Convener: Nina Nadine Ridder | Co-conveners: Bart van den Hurk, Philip Ward, Seth Westra, Jakob Zscheischler, Samuel Jonson Sutanto, Claudia Vitolo, Henny A.J. Van Lanen
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room M2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
NH1.4

Karst environments are characterized by distinctive landforms and unique hydrologic behaviors. Karst systems are commonly extremely complex, heterogeneous, and very difficult to manage because their formation and evolution are controlled by a wide range of geological, hydrological, geochemical and biological processes. Further, karst systems are extremely vulnerable due to the direct connection between the surface and subsurface compartments through conduit networks.
The great variability and unique connectivity may result in serious engineering problems: on one hand, karst groundwater resources are readily contaminated by pollution because of the rapidity of conduit flow; on the other hand, the presence of karst conduits that weakens the strength of the rock mass may lead to serious natural and human-induced hazards. The plan and development of engineering projects in karst environments thus require: 1) an enhanced understanding of natural processes that govern the initiation and evolution of karst systems through both field and modelling approaches, and 2) specific interdisciplinary approaches aiming at at better assessing the associated uncertainties and minimizing the detrimental effects of hazardous processes and environmental problems.
This session calls for abstracts on research related to geomorphology, hydrogeology, engineering geology, and/or hazard mitigation in karst environments in the context of climate change and increased human disturbance. It also aims to discuss various characterization and modelling methods applied in each specific research domain, with their consequences on the understanding of the whole process of karst genesis and functioning.

Share:
Co-organized as GM7.14/HS11.60/NP9.1
Convener: Hervé Jourde | Co-conveners: Pauline Collon, Naomi Mazzilli, Mario Parise, Xiaoguang Wang
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room L1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
NH1.5

Flooding is the foremost natural hazard around the world, affecting human life and property (directly and indirectly). In the current era, many hydraulic and hydrologic modelling techniques are available for flood risk assessment and management as well as flood risk prevention and preparedness. They provide a platform for the scientific community to explore the causes of floods and to build up efficient methods for flood mitigation.

This session invites in-depth research work carried out through flood modelling including hydrological modelling, flood hydrodynamic modelling, flood inundation mapping, flood hazard mapping, risk assessment, flood policy, and flood mitigation strategy. It also welcomes studies dealing with various uncertainties associated with different stages of modelling and the exploration of modern techniques for model calibration and validation.

In addition, real-time flood inundation mapping is an important aspect for the evacuation of people from low-lying areas and reduction of the death toll. Real-time data gained through UAV-based flood inundation mapping and associated uncertainty in real-time aerial surveying are welcome in this special issue.

Invited Speaker:
PD Dr. Heidi Kreibich (Helmholtz Centre Potsdam, GFZ German Research Centre for Geosciences)
Head of the Working Group Flood risk and climate adaptation

Share:
Co-organized as HS11.59
Convener: Cristina Prieto | Co-conveners: Dawei Han, Dhruvesh Patel
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room M2
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X3
NH1.7

Prediction skill of hydro-meteorological forecasting systems has remarkably improved in recent decades. Advances in both weather and hydrology models, linked to the availability of more powerful and efficient computational resources, allowed the development of even more complex systems based on the combination of spatially distributed physically-based hydrologic- and hydraulic models with deterministic and/or ensemble meteorological forecasting systems. Coupled atmosphere-hydrological modeling aims at describing the full atmospheric-terrestrial regional water cycle, i.e. extending from the top of the atmosphere, through the boundary layer, via the land surface and subsurface till lateral flow in the groundwater and in the river beds. Fully two-way coupled model systems thereby give the possibility to study long range feedbacks between groundwater, soil moisture redistribution and precipitation. Via improved and completed process descriptions fully coupled modeling may also increase the performance of hydrometeorological predictions of various spatial and temporal scales.
The objective of the session is to create a valuable opportunity for the interdisciplinary exchange of ideas and experiences among atmospheric-hydrological modelers and members of both hydrology- and Earth System modeling communities. Contributions are invited dealing with the complex interactions between surface water, groundwater and regional climate, with a specific focus on those presenting work on the development or application of one-way (both deterministic and ensemble) or fully-coupled hydrometeorological prediction systems for floods/flash-floods, droughts and water resources. Presentations of inter-comparisons between one-way and fully-coupled hydrometeorological chains are encouraged, such as contributions on novel one-way and fully-coupled modeling systems that bridge spatial scales through dynamic regridding or upscaling/downscaling methodologies. Also, presentations addressing data assimilation in coupled model systems are welcome. Likewise abstracts are invited on field experiments and testbeds equipped with complex sensors and measurement systems allowing multi-variable validation of such complex modeling systems.

Share:
Co-organized as AS4.4/HS4.2.3
Convener: Harald Kunstmann | Co-conveners: Martin Drews, Stefan Kollet, Alfonso Senatore
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
NH1.9 | PICO Media

Heat extremes are already one of the deadliest meteorological events and they are projected to increase in intensity and frequency due to rising CO2 emissions. Thus the risk these events pose to society may increase dramatically and society will need to adapt if the worst impacts are to be avoided. However, uncertainties for understanding the development of extreme heat episodes and their impacts remain large. This session therefore aims to address this challenge, welcoming research which improves our understanding of extreme heat events and how to respond to them. Suitable contributions in this regard may: (i) assess the drivers and underlying processes of extreme heat in observations and models; (ii) explore the diverse socio-economic impacts of extreme heat events (for example, on aspects relating to human health or economic productivity); (iii) address forecasting of extreme heat at seasonal to sub-seasonal time scales; (iv) focus on societal adaptation to extreme heat, including (but not limited to) the implementation of Heat-Health Early Warning Systems.

Share:
Co-organized as AS4.31
Convener: Tom Matthews | Co-conveners: Ana Casanueva, Colin Raymond, Martha Marie Vogel
PICOs
| Mon, 08 Apr, 10:45–12:30
 
PICO spot 1
NH1.10

Predicting current and future flood risk continues to be a major challenge for climatologists, hydrologists and hydraulicians. The complex nature of flood risk challenges established risk assessment methodologies and their modelling components, such as hydrologic and hydraulic simulation. Further, flood risk predictions are characterised by considerable uncertainty, which needs to be evaluated and clearly communicated to decision-makers. This session aims to review state-of-the-art flood risk assessment methodologies on different scales and experiences of recent flood events, the physical processes occurring during flood flows and uncertainties in measurement data and modelling. We welcome submissions in the areas of flood plain risk assessment and uncertainty analysis, floodplain management including new approaches to hydraulic and hydrologic modelling, model calibration and validation. Also, we are interested in contributions that show what kind of information is particularly helpful for reducing uncertainty, as well as measures for flood mitigation and the cost effectiveness of these measures. Since flood risk analyses have to include statements on extreme events, observation data are scarce. Therefore, we particularly invite contributions that address the issue of validation of flood risk analyses.

Share:
Convener: Giuseppe Tito Aronica | Co-conveners: Heiko Apel, Guy J.-P. Schumann
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room L1
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X3
HS5.1.2

Globally, we are facing massive challenges on how we manage our catchments, in both rural and urban areas, in the next decades. With a changing climate and increased pressure on our land resources we need to ensure we manage the water in our catchments more sustainably and even more so during hydro-climatic extremes. Nature-based solutions (NBS) are 'living' solutions inspired by and continuously supported by nature or natural processes. NBSs are designed to address various societal challenges in a resource efficient and adaptable manner to provide simultaneously economic, social and environmental benefits (European Commission 2015). Therefore NBS can be used within both rural and urban areas to mitigate catchment flood risk, provide drought resilience, protect and enhance endangered freshwater ecosystems and reduce diffuse pollution. However, there are still challenges in implementing NBS for reasons such as lack of evidence surrounding the effectiveness (e.g. at larger scales) and for delivering multiple benefits.

Therefore this session focuses on key research and policy questions associated with NBS. For example, how do we develop locally adapted solutions in catchments and urban areas? What are the impacts of these measures at larger scales (e.g. sub-catchment/ catchment scale)? How can we address multi-disciplinary benefits? How can we do more for less? Importantly, how can we provide the evidence base around the concept of Nature Based Solutions for managing hydrological extremes and water resource management? Examples of studies that cover either the management of flooding, drought, water quality or ecology (both in the rural, peri-urban and urban context) using NBS approaches are at the heart of this session. Management measures could include techniques such as Green Infrastructure, Natural Water Retention Measures, Natural Flood Management, Catchment Restoration, Ecological Engineering or Blue-Green Infrastructure. We invite (but not limit to) abstracts that demonstrate good quality hydrological experiments around NBS; that develop new or improve existing modelling approaches/decision support tools; that investigate and quantify the multiple benefits; and which explore the challenges of implementation (e.g. stakeholder uptake/economics/cost benefit).

Share:
Co-organized as NH1.12
Convener: Mark Wilkinson | Co-conveners: Mary Bourke, Paul Quinn, Christian Reinhardt-Imjela
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 2.15
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A
G3.5 Media

Geodesy is becoming increasingly important for observing the hydrological cycle and its effects on solid Earth shape. Signals in geodetic data have revealed water's influence on other geophysical processes including earthquakes, volcanos, land subsidence, mountain uplift, and other aspects of long- and short-term vertical land motion. GPS and InSAR measurements, for example, respectively provide high temporal and spatial resolution to study natural hydrologically-related deformation and monitor anthropogenic groundwater extraction and recharge, and GRACE is helping to track changes in the global terrestrial water storage. Signals of loading from changes in surface and groundwater storage are seen from basin to continental scale. Additionally, novel use of GPS reflectometry is operational for monitoring soil moisture and snow depth at continuous GPS stations in the western USA and Canada. We encourage contributions describing new observations and models of hydrological signals in geodetic time series and/or imaging. These include but are not limited to studies exploring deformation induced by loading, aquifer extraction/recharge, poroelastic deformation and stress changes, techniques for removing hydrological signals from geodetic datasets, monitoring water resources, or teleconnections between hydrologic and other geophysical phenomena.

Share:
Co-organized as HS2.5.5/NH1.13/SM5.7
Convener: William Hammond | Co-conveners: Kristel Chanard, Francesca Silverii, Nicola DAgostino
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
GM8.1

Fluvial systems cover much of the Earth’s surface; they convey water, sediments, and essential nutrients from the uplands to the sea, intermittently transferring these materials from the river channel to the adjacent floodplain. The routing of sediment and water through the channel network initiates complex process-form interactions as the river bed and banks adjust to changes in flow conditions. Despite their ubiquity, little is known about the landform-driven morphodynamic interactions taking place within the channel that ultimately determine patterns of sedimentation and changes of channel form. Furthermore, an understanding of how these process-form interactions scale with the size of the fluvial system is also currently lacking. Recent technological advances now afford us the opportunity to study and to quantify these process-form interactions in detail across a range of spatial and temporal scales. This session aims to bring together interdisciplinary researchers working across field, experimental, and numerical modelling approaches who are advancing methods and providing new insights into: (i) sediment transport and morphodynamic functioning of fluvial systems, (ii) evaluating morphological change at variable spatial and temporal scales, such as at event vs. seasonal scales, and (iii) investigating the sedimentology of these river systems. We particularly welcome applications which investigate the morphodynamic response of fluvial systems in all types and sizes and we specifically would like to encourage submissions from early career researchers and students.

Invited speakers:
- Lina Polvi Sjöberg (Umeå University): "Streams frozen in time? Particle- to catchment- scale dynamics of high-latitude post-glacial streams."
- Anette Eltner (TU Dresden): "Unmanned aerial and water vehicle data for hydro-morphological river
monitoring"

Share:
Co-organized as HS9.2.8/NH1.15/SSP3.5
Convener: Eliisa Lotsari | Co-conveners: Joshua Ahmed, Christopher Hackney, László Bertalan
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room G2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2
AS1.38

The understanding of tropical phenomena and their representation in numerical models still raise important scientific and technical questions, particularly in the coupling between the dynamics and diabatic processes. Among these phenomena, tropical cyclones (TC) are of critical interest because of their societal impacts and because of uncertainties in how their characteristics (cyclogenesis processes, occurrence, intensity, latitudinal extension, translation speed) will change in the framework of global climate change. The monitoring of TCs, their forecasts at short to medium ranges, and the prediction of TC activity at extended range (15-30 days) and seasonal range are also of great societal interest.

The aim of the session is to promote discussions between scientists focusing on the physics and dynamics of tropical phenomena. This session is thus open to contributions on all aspects of tropical meteorology between the convective and planetary scale, such as:

- Tropical cyclones,
- Convective organisation,
- Diurnal variations,
- Local circulations (i.e. island, see-breeze, etc.),
- Monsoon depressions,
- Equatorial waves and other synoptic waves (African easterly waves, etc.),
- The Madden-Julian oscillation,
- etc.

We especially encourage contributions of observational analyses and modelling studies of tropical cyclones and other synoptic-scale tropical disturbances including the physics and dynamics of their formation, structure, and intensity, and mechanisms of variability of these disturbances on intraseasonal to interannual and climate time scales.

Findings from recent field campaigns such as YMC and PISTON are also encouraged.

Share:
Co-organized as NH1.16
Convener: Jean Philippe Duvel | Co-conveners: Eric Maloney, Kevin Reed, Enrico Scoccimarro, Allison Wing
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room F1, Tue, 09 Apr, 08:30–10:15, 10:45–12:30, 14:00–15:45
 
Room F1
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X5
AS4.42

Numerical atmospheric dispersion models are an essential tool for assessment of emergency situations related to airborne particles or gases released into the atmosphere by natural or man-made hazards. They are used complementary to observational data in order to fill-in e.g. temporal- or spatial gaps and to conduct forecasts facilitating the planning of mitigation strategies.
The focus of this session will be on environmental emergency scenarios (airborne hazards) which can have extremely high impact on society and environment: volcano eruptions, nuclear accidents, as well as more localised emergencies, such as dust storms and strong vegetation fires or other occasions when hazardous pollutants are injected into the atmosphere.

Share:
Co-organized as NH1.17
Convener: Gerhard Wotawa | Co-conveners: Delia Arnold, Marcus Hirtl, Mikhail Sofiev
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X5
AS5.1 | PICO

The International Monitoring System (IMS) of the Comprehensive Nuclear-Test-Ban Treaty (CTBT) senses the solid Earth, the oceans and the atmosphere with a global network of seismic, infrasound, and hydroacoustic sensors as well as detectors for atmospheric radioactivity. The primary purpose of the IMS data is for nuclear explosion monitoring regarding all aspects of detecting, locating and characterizing nuclear explosions and their radioactivity releases. On-site verification technologies apply similar methods on smaller scales as well as geophysical methods such as ground penetrating radar and geomagnetic surveying with the goal of identifying evidence for a nuclear explosion close to ground zero. Papers in this session address advances in the sensor technologies, new and historic data, data collection, data processing and analysis methods and algorithms, uncertainty analysis, machine learning and data mining, experiments and simulations including atmospheric transport modelling. This session also welcomes papers on applications of the IMS and OSI instrumentation data. This covers the use of IMS data for disaster risk reduction such as tsunami early warning, earthquake hazard assessment, volcano ash plume warning, radiological emergencies and climate change related monitoring. The scientific applications of IMS data establish another large range of topics, including acoustic wave propagation in the Earth crust, stratospheric wind fields and gravity waves, global atmospheric circulation patterns, deep ocean temperature profiles and whale migration. The use of IMS data for such purposes returns a benefit with regard to calibration, data analysis methods and performance of the primary mission of monitoring for nuclear explosions.

Share:
Co-organized as NH1.18/SM5.3
Convener: Martin Kalinowski | Co-conveners: Lars Ceranna, Yan Jia, Peter Nielsen, Ole Ross
PICOs
| Fri, 12 Apr, 10:45–12:30
 
PICO spot 5a
AS4.25

As the societal impacts of hazardous weather and other environmental pressures grow, the need for integrated predictions which can represent the numerous feedbacks and linkages between physical and chemical atmospheric processes is greater than ever. This has led to development of a new generation of high resolution multi-scale coupled prediction tools to represent the two-way interactions between aerosols, chemical composition, meteorological processes such as radiation and cloud microphysics.

Contributions are invited on different aspects of integrated model and data assimilation development, evaluation and understanding. A number of application areas of new integrated modelling developments are expected to be considered, including:

i) improved numerical weather prediction and chemical weather forecasting with feedbacks between aerosols, chemistry and meteorology,

ii) two-way interactions between atmospheric composition and climate variability.

This session aims to share experience and best practice in integrated prediction, including:

a) strategy and framework for online integrated meteorology-chemistry modelling;
b) progress on design and development of seamless coupled prediction systems;
c) improved parameterisation of weather-composition feedbacks;
d) data assimilation developments;
e) evaluation, validation, and applications of integrated systems.

This Section is organised in cooperation with the Copernicus Atmosphere Monitoring Service (CAMS), the "Pan-Eurasian Experiment" (PEEX) multidisciplinary program and the WMO Global Atmosphere Watch (GAW) Programme, celebrating its 30 years anniversary in 2019.

Share:
Co-organized as NH1.19/NP5.4
Convener: Alexander Baklanov | Co-conveners: Johannes Flemming, Georg Grell
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room 0.11
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X5
HS7.5

Precipitation is the main driver for a number of hydrologic and geomorphic hazards (such as floods, landslides and debris flows), which pose a significant threat to modern societies on a global scale. The continuous increase of population and urban settlements in hazard-prone areas in combination with evidence of changes in precipitation patterns lead to a continuous increase of the risk associated with precipitation-induced hazards. To improve resilience and to design more effective mitigation strategies, we need to better understand the aspects of vulnerability, risk, and triggers that are associated with these hazards.

This session aims to gather contributions dealing with various precipitation induced hazards that address the aspects of vulnerability analysis, risk estimation, impact assessment, mitigation policies and communication strategies. Specifically, we aim to collect contributions from the academia, the industry (e.g. insurance) and government agencies (e.g. civil protection) that will help identify the latest developments and ways forward for improving the resilience of communities at local, regional and national scales, and proposals for improving the interaction between different entities and sciences.

Contributions focusing on, but not limited to, novel developments and findings on the following topics are particularly encouraged:

- Physical and social vulnerability analysis and impact assessment of precipitation-related hazards.
- Advances in the estimation of socioeconomic risk from precipitation-induced hazards.
- Characteristics of precipitation patterns leading to high-impact events.
- Evidence on the relationship between precipitation patterns and socioeconomic impacts.
- Hazard mitigation procedures.
- Communication strategies for increasing public awareness, preparedness, and self-protective response.
- Impact-based forecast and warning systems

Share:
Co-organized as NH1.20
Convener: Efthymios Nikolopoulos | Co-conveners: Francesco Marra, Nadav Peleg, Isabelle Ruin
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room 2.15
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS7.3 | PICO

Hydroclimatic conditions and the availability of water resources in space and time constitute important factors for maintaining an adequate food supply, the quality of the environment, and the welfare of inhabitants, in the context of sustainable growth and economic development. This session is designed to explore the impacts of hydroclimatic variability, climate change, and the temporal and spatial availability of water resources on: food production, population health, the quality of the environment, and the welfare of local ecosystems. We particularly welcome submissions on the following topics:

Complex inter-linkages between hydroclimatic conditions, food production, and population health, including: extreme weather events, surface and subsurface water resources, surface temperatures, and their impacts on food security, livelihoods, and water- and food-borne illnesses in urban and rural environments.

Quantitative assessment of surface-water and groundwater resources, and their contribution to agricultural system and ecosystem statuses.

Spatiotemporal modeling of the availability of water resources, flooding, droughts, and climate change, in the context of water quality and usage for food production, agricultural irrigation, and health impacts over a wide range of spatiotemporal scales

Intelligent infrastructure for water usage, irrigation, environmental and ecological health monitoring, such as development of advanced sensors, remote sensing, data collection, and associated modeling approaches.

Modelling tools for organizing integrated solutions for water, precision agriculture, ecosystem health monitoring, and characterization of environmental conditions.

Water re-allocation and treatment for agricultural, environmental, and health related purposes.

Impact assessment of water-related natural disasters, and anthropogenic forcings (e.g. inappropriate agricultural practices, and land usage) on the natural environment; e.g. health impacts from water and air, fragmentation of habitats, etc.

Share:
Co-organized as CL4.41/ERE8.7/NH1.21/NP9.5
Convener: George Christakos | Co-conveners: Alin Andrei Carsteanu, Andreas Langousis, Hwa-Lung Yu
PICOs
| Mon, 08 Apr, 14:00–18:00
 
PICO spot 5b
HS7.2

The assessment of precipitation variability and uncertainty is crucial in a variety of applications, such as flood risk forecasting, water resource assessments, evaluation of the hydrological impacts of climate change, determination of design floods, and hydrological modelling in general. Within this framework, this session aims to gather contributions on research, advanced applications, and future needs in the understanding and modelling of precipitation variability, and its sources of uncertainty.
Specifically, contributions focusing on one or more of the following issues are particularly welcome:
- Novel studies aimed at the assessment and representation of different sources of uncertainty versus natural variability of precipitation.
- Methods to account for different accuracy in precipitation time series, e.g. due to change and improvement of observation networks.
- Uncertainty and variability in spatially and temporally heterogeneous multi-source precipitation products.
- Estimation of precipitation variability and uncertainty at ungauged sites.
- Precipitation data assimilation.
- Process conceptualization and modelling approaches at different spatial and temporal scales, including model parameter identification and calibration, and sensitivity analyses to parameterization and scales of process representation.
- Modelling approaches based on ensemble simulations and methods for synthetic representation of precipitation variability and uncertainty.
- Scaling and scale invariance properties of precipitation fields in space and/or in time.
- Physically and statistically based approaches to downscale information from meteorological and climate models to spatial and temporal scales useful for hydrological modelling and applications.

Share:
Co-organized as AS1.33/CL2.09/NH1.22/NP5.7
Convener: Simone Fatichi | Co-conveners: Alin Andrei Carsteanu, Roberto Deidda, Andreas Langousis, Chris Onof
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room 2.44
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall A
HS7.7 | PICO

Over the last decades, a significant body of empirical and theoretical work has revealed the departure of statistical properties of hydrometeorological processes from the classical statistical prototype, as well as the scaling behaviour of their variables in general, and extremes in particular, in either state, space and/or time. This PICO session (i.e., a 2-minute oral presentation, nicknamed "2-minute madness", followed by an interactive poster presentation on dedicated touch-screens) aims at presenting the latest developments on:
- Coupling stochastic approaches with deterministic hydrometeorological predictions, in order to better represent predictive uncertainty;
- Stochastic-dynamic approaches that are more consistent with the hydrometeorological reality than both deterministic and statistical models separately;
- Variability at climatic scales and its interplay with the ergodicity of space-time probabilities;
- Linking underlying physics and scaling stochastics of hydrometeorological extremes;
- Development of parsimonious representations of probability distributions of hydrometeorological extremes over a wide range of scales and states;
- Understanding and using parsimonious parametrizations of extremes in risk analysis applications and hazard prediction.
The suggested session description is submitted to the HS division of EGU and is sponsored by the International Commission on Statistical Hydrology of the International Association of Hydrological Sciences (ICSH-IAHS, former STAHY).

Share:
Co-organized as NH1.23, co-sponsored by IAHS-ICSH
Convener: Jose Luis Salinas Illarena | Co-conveners: Marco Borga, Auguste Gires, Rui A. P. Perdigão, Alberto Viglione
PICOs
| Tue, 09 Apr, 10:45–12:30
 
PICO spot 5b
HS7.8

Urban hydrological processes are characterised by high spatial variability and short response times resulting from a high degree of imperviousness. Therefore, urban catchments are especially sensitive to space-time variability of precipitation at small scales. High resolution precipitation measurements in cities are crucial to properly describe and analyse urban hydrological response. At the same time, urban landscapes pose specific challenges to obtaining representative precipitation and hydrological observations.
This session focuses on high resolution precipitation and hydrological measurements in cities and on approaches to improve modelling of urban hydrological response:
- Novel techniques for high resolution precipitation measurement in cities and approaches for merging remote sensing data with in situ measurements to obtain representation of urban precipitation fields;
- Novel approaches to hydrological field measurements in cities, including data obtained from citizen observatories;
- Novel approaches to modelling urban catchment properties and hydrological response, from physics-based models, fully and semi-distributed modelling to stochastic and statistical conceptualisation;
- Applications of measured precipitation fields in urban hydrological models to improve prediction of flood response and real-time control of stormwater systems for pollution load reduction;
- rainfall modelling for urban applications, including stochastic rainfall generators.

Share:
Co-organized as NH1.24/NP3.5
Convener: Marie-Claire ten Veldhuis | Co-conveners: Hannes Müller-Thomy, Susana Ochoa Rodriguez, Daniel Schertzer
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room 2.15
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall A
AS1.30

Extreme convective events are increasing in northern and eastern Europe in frequency and intensity causing many deaths, injuries and damage to property every year, and accounting for major economic damages related to natural disasters in several countries. Atlantic hurricanes become extra-tropical cyclones and, sometimes, reach northern Europe. Mediterranean hurricanes (Medicanes or tropical-like cyclones) are not that frequent as other convective systems or tropical cyclones, but these can still reach the intensity of tropical cyclones, causing severe damages in the Southern European region. Supercells and connected tornadoes are also becoming more frequent in central Europe.

In recent years, attention was paid to the detection and monitoring of volcanic ash clouds as their impact on the European air traffic control system was unprecedented. In 2010 the Eyjafjallajökull eruption caused the closure of the airspace of several countries generating the largest air traffic shutdown since the World War II. Volcanic clouds are very dangerous for the aviation operations as they can cause damage of the aircraft systems and engines not only close to active volcanoes but also at large distance from the eruption, and they affect economic, political and cultural activities. Europe is located between the chain of Icelandic and Italian/African volcanoes which are unpredictable, and could easily emanate the ash clouds throughout the skies of the continent.

The recent Anak Krakatau eruption (December 2018) highlighted the issue on different techniques to distinguish volcanic ash clouds than convective clouds and the unsolved problem to understand if the cloud top was tropospheric or stratospheric. Specific discussion on this topic will be very welcome to the session.

The extreme convective clouds and the volcanic ash clouds are types of “extreme clouds”. The “extreme clouds” detection and estimation of their physical parameters is a highly multidisciplinary and challenging topic since the same techniques and instruments can be used for meteorology, volcanic monitoring, atmospheric physics and climate purposes. But there is an urgent need to develop new techniques and instruments for monitoring, detecting and modeling “extreme clouds” to develop early warning systems and to support users, decision makers and policy makers. Given the large uncertainties that still remain in the field, enlarging and coordinating the research community for developing new techniques and improving our knowledge is required. Furthermore, there is a need for improved information exchange regarding the impact of the extreme clouds on daily operations between the producers and intended uses of the information.

The objective of the session is to connect different communities in touch with the “extreme clouds”, such as scientists working in remote sensing, modelers, meteorologists, physicists, aviation managers. Thus, allowing the researchers to understand the end-users’ needs and for the end-users to understand the research capabilities.

This session solicits the latest studies from the spectrum of:
- detection, monitoring and modeling of extreme clouds,
- understanding the impact of extreme clouds on climate changes,
- proposal of new products or services focused on the end-users prospective,
- discussion on Anak Krakatau eruption (December 2018)

By considering studies over this range of topics we aim to identify new methods, detail current challenges, understand common techniques/methods and identify common discussions within the communities of atmospheric physicists, meteorologists, modelers, air traffic managers, pilots sensors engineers and engines manufacturers. We particularly welcome and encourage contributions connecting different fields such as:
- forecasting tools to support air traffic management improving the limits of the present science and new products/tools providing better services to the end-users,
- extreme clouds remote sensing with novel techniques and new sensors,
- novel techniques to detect overshooting and their impact on climate.

The aim of the session is to promote discussions between scientists on future developments, in understanding, monitoring and forecasting the extreme clouds, studying their impact and to extend the discussion with the end-users for improving air safety. This session is thus open to contributions on all aspects of remote sensing, forecast, and tools/services development such as:

- Extreme clouds remote sensing
- Extreme clouds modeling
- Extreme clouds forecasting and nowcasting
- Extreme clouds structure
- Extreme clouds and climate change
- Overshooting and Ice clouds
- Air traffic management issues related to extreme clouds
- Airport issues

Share:
Co-organized as NH1.25
Convener: Riccardo Biondi | Co-conveners: Tatjana Bolic, Stefano Corradini, Nina Iren Kristiansen
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room 0.60
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X5
ITS4.7/NH1.26/AS4.48/CL2.08/HS4.3.3/NP9.9 Media

The occurrence of extremes such as droughts, flash floods, hailstorms, storm surges and tropical storms can have significant and sometimes catastrophic consequences to society. However, not all low probability weather/climate events will lead to “high impacts” on human or natural systems or infrastructure. Rather, the severity of such events depend also intrinsically on the exposure, vulnerability and/or resilience to such hazards of affected systems, including emergency management procedures. Similarly, high impact events may be compounded by the interaction of several, e.g., in their own right less severe hydro-meteorological incidents, sometimes separated in time and space. Or they may similarly result from the joint failures of multiple human or natural systems. Consequently, it is a deep transdisciplinary challenge to learn from past high impact events, understand the mechanisms behind them and ultimately to project how they may potentially change in a future climate.

The ECRA (European Climate Research Alliance) Collaborative Programme on “High Impact Events and Climate Change” aims to promote research on the mechanisms behind high impact events and climate extremes, simulation of high impact events under present and future climatic conditions, and on how relevant information for climate risk analysis, vulnerability and adaptation may be co-created with users, e.g., in terms of tailored climate services. For this aim, this Interdisciplinary and Transdisciplinary Session invites contributions that will serve to (i) better understand the mechanisms behind high impact events from a transdisciplinary and interdisciplinary perspective, e.g. case studies and the assessment of past high impact events, including detection and attribution; (ii) project changes to high impact events through, e.g. high resolution climate and impacts modelling (including economic modelling); (iii) produce climate information at the relevant scales (downscaling); and co-create climate services with users to help deal with the risk and/or impacts of high-impact events, e.g. risk analysis and climate adaptation. Abstracts that highlight recent advances from a transdisciplinary perspective for example through the innovation of climate services will be particularly encouraged. Authors and contributors to this session will be offered to present their work in a Special Issue of the journal “Sustainability”.

Share:
Co-organized as NH1.26/AS4.48/CL2.08/HS4.3.3/NP9.9
Convener: Martin Drews | Co-conveners: Peter Braesicke, Hilppa Gregow, Kristine S. Madsen
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room L7
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X3
CL3.12.2

One of the big challenges in Earth system science consists in providing reliable climate predictions on sub-seasonal, seasonal, decadal and longer timescales. The resulting data have the potential to be translated into climate information leading to a better assessment of multi-scale global and regional climate-related risks.
The latest developments and progress in climate forecasting on subseasonal-to-decadal timescales will be discussed and evaluated in this session. This will include presentations and discussions of predictions for a time horizon of up to ten years from dynamical ensemble and statistical/empirical forecast systems, as well as the aspects required for their application: forecast quality assessment, multi-model combination, bias adjustment, downscaling, etc.
Following the new WCPR strategic plan for 2019-2029, prediction enhancements are solicited from contributions embracing climate forecasting from an Earth system science perspective. This includes the study of coupled processes, impacts of coupling and feedbacks, and analysis/verification of the coupled atmosphere-ocean, atmosphere-land, atmosphere-hydrology, atmosphere-chemistry & aerosols, atmosphere-ice, ocean-hydrology, ocean-ice, ocean-chemistry and climate-biosphere (including human component). Contributions are also sought on initialization methods that optimally use observations from different Earth system components, on assessing and mitigating the impacts of model errors on skill, and on ensemble methods.
We also encourage contributions on the use of climate predictions for climate impact assessment, demonstrations of end-user value for climate risk applications and climate-change adaptation and the development of early warning systems.

A special focus will be put on the use of operational climate predictions (C3S, NMME, S2S), results from the CMIP5-CMIP6 decadal prediction experiments, and climate-prediction research and application projects (e.g. EUCP, APPLICATE, PREFACE, MIKLIP, MEDSCOPE, SECLI-FIRM, S2S4E).

Solicited talk:
Multi-year prediction of ENSO
By Jing-Jia Luo from the Institute for Climate and Application Research (ICAR), Nanjing University of Science Information and Technology, China

Share:
Co-organized as BG1.43/HS11.66/NH1.30/NP5.9/OS1.30
Convener: Andrea Alessandri | Co-conveners: Louis-Philippe Caron, Yoshimitsu Chikamoto, June-Yi Lee, Stéphane Vannitsem
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room F2
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X5
HS4.1.1 Media

Drought and water scarcity are important issues in many regions of the Earth, requiring innovative hydro-meteorological monitoring, modelling and forecasting tools to evaluate the complex impacts on the availability and quality of water resources. While drought describes a natural hazard, water scarcity is related to long-term unsustainable use of water resources and associated socio-economic aspects. Both phenomena are, however, closely linked, with the complex interrelationship requiring careful attention.
While an increase in the severity and frequency of droughts can lead to water scarcity situations, particularly in regions that are already water stressed, overexploitation of available water resources can exacerbate the consequences of droughts. In the worst case, this can lead to long-term environmental and socio-economic impacts. Particular attention should, therefore, be paid to the feedbacks between these two phenomena, including the potential impacts of climate change. It is therefore necessary to improve both monitoring and sub-seasonal to seasonal forecasting for droughts and water availability, and to develop innovative indicators and methodologies that translate the information provided into effective drought early warning and risk management.
This session will address statistical, remote sensing and physically-based techniques, aimed at monitoring, modelling and forecasting hydro-meteorological variables relevant to drought and/or water scarcity. These include, but are not limited to, precipitation, snow cover, soil moisture, streamflow, groundwater levels and extreme temperatures. The development and implementation of drought indicators meaningful to decision making processes, and ways of presenting and explaining them to water managers, policy makers and other stakeholders, are further issues to be addressed.
The session aims to bring together scientists, practitioners and stakeholders in the fields of hydrology and meteorology, as well as in the field of water resources and/or risk management; interested in monitoring, modelling and forecasting drought and water scarcity, and in analyzing their interrelationships, hydrological impacts, and the feedbacks with society. Particularly welcome are applications and real-world case studies in regions subject to significant water stress, where the importance of drought warning, supported through state-of-the-art monitoring and forecasting of water resources availability is likely to become more important in the future.

Share:
Co-organized as NH1.31
Convener: Brunella Bonaccorso | Co-conveners: Carmelo Cammalleri, Athanasios Loukas, Micha Werner
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room B
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall A
HS4.1.3

Intense rainfall and/or orographic precipitation events in small and medium size catchments can trigger flash floods, which are characterized by very short response times and high specific peak discharges. Under appropriate topographic conditions, such rainstorms also cause debris flows or shallow landslides mobilizing large amounts of unconsolidated material. Although significant progress has been made in the last decade in the management of flash floods related risks, these events remain poorly understood and their predictability is limited by a high non-linearity in the hydrological response, related to threshold effects and structured heterogeneity at all scales. In addition, predicting the initiation and runout of rainfall-induced landslides and their interactions with hydrological and hydraulic processes is still affected by large uncertainties. Therefore, improving the flash floods understanding, forecasting and risk management capacities requires multi-disciplinary approaches, as well as innovative measurements and modelling approaches as these events often occur in ungauged basins.

This session welcomes contributions illustrating current advances and approaches in monitoring, modelling, forecasting and warning flash floods and associated geomorphic processes. Contributions documenting the societal responses and impacts, and analysing risk management systems are also welcome. The session will cover the following main scientific themes:
- Development of new measurement techniques adapted to flash floods monitoring and quantification of the associated uncertainties
- Use of remote sensing data, weather radar, and lightning for improving forecasting models input data
- Development of modelling tools for predicting and forecasting flash floods and/or rainfall-induced landslides in gauged and ungauged basins
- Use of new criteria such as specific “hydrological signatures” for model and forecast evaluation
- Identification of processes leading to flash flood events and/or rainfall-induced landslides from data analysis and/or modelling, and of their characteristic space-time scales
- Evolutions in flash-flood characteristics possibly related to changing climate.
- Observation, understanding and prediction of the social vulnerability and social response to flash floods and/or associated landsliding
- Flash flood and/or rainfall-induced landslide risk assessment using multi-disciplinary approaches and warning systems, and evaluation of the relevance of those systems.

Share:
Co-organized as NH1.32
Convener: Olivier Payrastre | Co-conveners: Isabelle Braud, Jonathan Gourley, Marcel Hürlimann, Massimiliano Zappa
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room 2.25
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall A
HS4.2.1

Ensemble hydro-meteorological prediction systems have higher forecasting skills than their deterministic counterparts, which in turn can improve risk assessment decision-making in operational water management. Ensemble forecasts are now common many operational settings, such as flood and drought forecasting, and can be used in applications from forecasting extreme events to optimisation of water resources allocation. However, moving from deterministic forecasting systems to a probabilistic framework poses new challenges but it also opens new opportunities for the developers and users of ensemble forecasts to improve their systems.

This session brings together scientists, forecasters, practitioners and stakeholders interested in exploring the use of ensemble hydro-meteorological forecast techniques in hydrological applications: e.g., flood control and warning, reservoir operation for hydropower and water supply, transportation and agricultural management. The session will also explore new forecast products and systems in terms of their implementation and practice for real-time forecasting.

Contributions will cover, but are not restricted to, the following topics:
- The design of ensemble prediction systems
- Requirements and techniques to improve the skill of hydro-meteorological ensemble forecasting systems
- Methods to bias correct and calibrate ensemble forecasts
- Methods to assess the quality or benchmark the performance of ensemble forecasts
- Approaches to deal with forecast scenarios in real-time
- Strategies for balancing human expertise and automation in ensemble forecasting systems
- Challenges of the paradigm shift from deterministic to ensemble forecasts
- Methods and products that include forecaster knowledge to improve the interpretation of ensemble forecasts
-Use of cost/loss scenarios for optimising systems
- Approaches for efficient training (including role-playing games) on the use and value of ensemble predictions.

The session welcomes new experiments and practical applications showing successful experiences, as well as problems and failures encountered in the use of uncertain forecasts and ensemble hydro-meteorological forecasting systems. Case studies dealing with different users, temporal and spatial scales, forecast ranges, hydrological and climatic regimes are welcome.

Solicited speaker Niko Wanders from Utrecht University: From seasonal forecasting to water management decisions: challenges and opportunities

The session is part of the HEPEX international initiative: www.hepex.org

Share:
Co-organized as AS4.5/NH1.33, co-sponsored by HEPEX
Convener: Fredrik Wetterhall | Co-conveners: Rebecca Emerton, Kolbjorn Engeland, Tomasz Niedzielski, Jan Verkade
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room 2.31
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall A
HS4.2.2

This session will address the understanding of sources of predictability and quantification and reduction of predictive uncertainty of hydrological extremes in operational hydrologic forecasting. Including uncertainty estimation in operational forecasting systems is becoming a more common practice. However, a significant research challenge and central interest of this session is to understand the sources of predictability and development of approaches, methods and techniques to enhance predictability (e.g. accuracy, reliability etc.) and quantify and reduce predictive uncertainty in general. Providing uncertainty estimates for integrated catchment models involving forecasting models, either as a cascade or as alternative models, can prove particularly challenging and are an issue of interest to the session. Data assimilation or pre-/post-processing in real-time can provide important ways of improving the quality (e.g. accuracy, reliability) and reducing the uncertainty of hydrological forecasts. Methods that help update forecasts in real-time to reduce bias and increase accuracy, and case study demonstrations of their use, are of interest to this session.
The models involved with the methods for predictive uncertainty, data assimilation, post-processing and decision-making may include catchment models, runoff routing models, groundwater models, coupled meteorological-hydrological models as well as combinations of these. Demonstrations of the sources of predictability and subsequent reduction in predictive uncertainty at different scales through improved representation of model process (physics, parameterization, numerical solution, data support and calibration) and error, forcing and initial state are of special interest to the session.
Contributions are expected to address the following issues:
(i) Sources of predictability (model, forcing, initial conditions)
(ii) Quantification and reduction of predictive uncertainty
(iii) Real-time data assimilation
(iii) Untangling sources of uncertainty in the meteorological-hydrological forecasting chain
(iv) Effect of (improved) representation of model process on forecast quality and predictive uncertainty
(v) Methods for preparing meteorological predictions as input to real-time hydrological probability forecasts
(vi) Verification (methods) of hydrologic forecasts
(vii) Case studies of the above

Solicited speaker is Maurizio Mazzoleni (from Uppsala University) who will give a talk about Real-time assimilation of crowdsourced observations in hydrological and hydraulic models.

Share:
Co-organized as NH1.34
Convener: Oldrich Rakovec | Co-conveners: Hamid Moradkhani, Albrecht Weerts
Orals
| Tue, 09 Apr, 14:00–15:30
 
Room 2.31
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall A
HS4.3.1 | PICO

This interactive PICO session aims to bridge the gap between science and practice in operational forecasting for different water-related natural hazards. Operational (early) warning systems are the result of progress and innovations in the science of forecasting. New opportunities have risen in physically based modelling, coupling meteorological and hydrological forecasts, and ensemble forecasting. However, once a system is operational, the development often continues more in the field of applied research or consultancy. Furthermore, development of these types of systems is usually performed within one field of expertise. Forecasting warning research can be more effective when these efforts and experiences are combined.

The focus of this session will be on bringing the expertise from different fields together as well as exploring differences, similarities, problems and solutions between forecasting systems for varying natural hazards. Real-world case studies of system implementations - configured at local, regional and national scales - will be presented, including trans-boundary issues. An operational warning system can include monitoring of data, analysing data, making forecasts, giving warning signals and suggesting response measures.

Contributions addressing the following topics are welcome:
- Applications of forecasting warning systems for water-related natural hazards, such as: flood, drought, tsunami, landslide, hurricane etc.
- Applications of forecasting warning systems for other hazards, such as: pollution
- Operational data validation and calibration
- Operational warning methods and procedures
- Real time control for hazards
- The operational system as a tool for improved risk management and decision making
- Performance of operational forecasts, event analysis
- Serious games and training with operational systems
- Structure of operational forecasting systems
- Techniques/applications to better communicate forecasts with users - such as visualization tools and impact assessments
- Impact-based forecasts for early action, response and control.

Share:
Co-organized as NH1.35
Convener: Ilias Pechlivanidis | Co-conveners: Céline Cattoën-Gilbert, Michael Cranston, Femke Davids, Marc van den Homberg, Gabriela Guimarães Nobre
PICOs
| Thu, 11 Apr, 14:00–18:00
 
PICO spot 5b
BG1.8 | PICO

Ongoing climate change and a shorter return period of climate and hydrological extremes has been observed to affect the distribution and vitality of ecosystems. In many regions, available water is a crucial point of survival. Risk can be enhanced by the exposure and/or by the vulnerability of the affected ecosystem.
The session focuses on the complex assessment of all determining factors through a joint utilization of a broad spectrum of databases and methods (e.g. field and laboratory measurements, remote sensing, modelling and monitoring techniques) that can provide a suitable basis for developing long-term strategies for adaptation.
The session should provide a multidisciplinary platform for sharing experiences and discussing results of local and catchment scale case studies from a wider range of relevant fields such as
• observed impacts and damage chains in natural ecosystems induced by climate and hydrological extremes;
• correlation between the underlying environmental factors (e.g. climate, water holding capacity, soil characteristics) and the distribution/vitality of ecosystems;
• integrated application or comparison of databases and methods for the identification and complex assessment of ecosystem responses to abiotic stress factors;
• expected tendencies of abiotic risk factors affecting and limiting the survival of the vulnerable species.
Contributions are encouraged from international experiences, ongoing research activities as well as national, regional and local initiatives.

Share:
Co-organized as CL4.40/HS10.14/NH1.36/SSS13.3
Convener: Borbála Gálos | Co-conveners: Zoltán Gribovszki, Adrienn Horváth, Dejan Stojanovic, Jan Szolgay
PICOs
| Thu, 11 Apr, 14:00–15:45
 
PICO spot 4
BG1.57 Media

Fire is a global phenomenon influencing ecosystem functioning, carbon stocks and fluxes, and atmospheric composition, with large impacts on human health, safety and economy. The relative importance of climate, vegetation and humans as drivers of fire activity varies across spatial and temporal scales. Multiscale and interdisciplinary assessments of fire behavior are required to understand global climate-fire feedbacks, as well as regional interactions between vegetation and humans, and fire.
Fire influences the global carbon cycle among others through its carbon emissions and post-fire ecosystem carbon sequestration. In addition, black carbon (also known as pyrogenic carbon, charcoal, soot) is a crucial component in the carbon cycle, yet uncertainties remain regarding sizes, losses and fluxes between land, rivers, oceans and atmosphere.
Remote sensing provides baseline information for all stakeholders involved in monitoring of biomass burning at different scales and for understanding how ecosystems respond to fires. However, there are still large uncertainties in satellite-based active fire, burned area, and fire emissions estimates, in part due to the complexity and diversity of the ecosystems affected. Building on the environmental significance and scientific challenges described above, this session will bring together fire scientists working on biomass burning monitoring and early warning systems. The aim of this session is to improve the understanding of interactions between fire, vegetation, carbon, climate and humans. We invite contributions developing or using remote sensing datasets, in situ observations, charcoal records, laboratory experiments and modeling approaches. We welcome studies that help to improve our understanding of (1) the relative importance of climate, vegetation and humans on fire occurrence across spatial and temporal scales (2) the impacts of fire on vegetation, atmosphere and society, (3) feedbacks between fire, vegetation and climate, and (4) the role of fire in the carbon cycle, with special focus on the transfer of black carbon and other fire markers from terrestrial ecosystems to aquatic environments, and their biogeochemical fate in these environments, (5) innovative use of remote sensing technologies (LIDAR, infrared cameras, drones) for fuel characterization, fire detection and monitoring; (6) algorithms/models applicable to regional-to-global scale fire analyses exploring active fire detection and characterization (e.g., fire radiative power, area affected, combustion phase), burned area mapping, atmospheric emissions and smoke transport, (7) fire product validation and error assessment, (8) analytical tools designed to enhance situational awareness among fire practitioners and early warning systems, addressing specific needs of operational fire behavior modeling.

Invited speakers:
Emilio Chuvieco, University of Alcala
Elena Kukavskaya, Sukachev Institute of Forest, Russian Academy of Sciences

Share:
Co-organized as AS4.45/NH1.38
Convener: Sander Veraverbeke | Co-conveners: Renata Libonati, Gitta Lasslop, Duarte Oom, Ioannis Bistinas, Alysha Inez Coppola, Angelica Feurdean, Carrie Masiello
Orals
| Fri, 12 Apr, 10:45–12:30
 
Room 2.44
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall A
ITS4.6/CL3.09/ERE1.7/NH1.39 Media

Estimating the impact of climate change on both the natural and socio-economic environment plays an important role in informing a range of national and international policies, including energy, agriculture and health. Understanding these impacts, and those avoided, has never been more pertinent since the adoption of the 2015 Paris Agreement, which sought to hold “the increase in the global average temperature to well below 2°C above pre-industrial levels and to pursue efforts to limit the temperature increase to 1.5°C, recognizing that this would significantly reduce the risks and impacts of climate change".

Policies may aim to mitigate (i.e. reduce emissions), counteract (i.e. negative emissions) and/or adapt to anthropogenic climate change and it is equally important to quantify the impact of implementing these options. While rapid, deep mitigation is clearly a pre-requisite to success, delays to such measures imply a greater reliance upon large scale negative emissions technologies. Those based on land are likely to face competing pressure from wide ranging economic activity, and knowledge of these interactions and synergies is limited. Similarly while adaptation options are wide ranging, the uses of nature-based solutions, which often provide mitigation co-benefits and are often highly cost effective, are under-researched and rarely integrated into overall natural hazard or climate change risk management strategies.

Furthermore, the methods used to evaluate impact in the climate context are many and varied, including empirical, econometric and process-based. These methods continue to evolve implying that the assessment of impact may depend upon the analytical approach chosen.

This inter- and transdisciplinary session aims to draw together scientists, developing climate-impact evaluation methods, evaluating the impact (or avoided impact) of anthropogenic climate change upon natural and socio-economic environments, investigating the potential for mitigation and counteraction options to reduce long term risk, and studying the value of multiple adaptation options to stakeholders when planning how to manage vulnerability.

Invited speaker: Sonia Seneviratne

Share:
Co-organized as CL3.09/ERE1.7/NH1.39
Convener: Luke Jackson | Co-conveners: Paul Hudson, Dann Mitchell, Fabian Stenzel
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room L7
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X5

NH2 – Volcanic Hazards

NH2.1 Media

More than 75% of the volcanic activity on Earth occurs underwater. Recent unrest observed at many submarine volcanoes raises serious concerns regarding the level of risk posed to local communities. Many parameters of submarine to emergent volcanic activity are under active investigation, including how explosive activity varies with water depth, magma properties and magma composition. This session brings together experts from diverse disciplines to explore hazards posed to island and coastal communities as well as mechanisms of submarine to emergent volcanic activity.

The session will include presentations that integrate innovative and emerging technologies to enable focused and multi-disciplinary studies of recent and ancient eruptions and their products, as well as breakthrough developments in understanding the impact of disastrous submarine volcanic hazards on present and past societies.

We call for abstracts in the following areas:
- Identification of submarine volcanic hazards such as explosive eruptions, volcanic earthquakes, submarine landslides, hydrothermal emissions and volcanogenic tsunamis.
- Studies of the mechanics of submarine and emergent volcanic eruptions and formation of oceanic islands.
- Investigations of optimal monitoring technologies and state of the art methods that provide new insights into explorations of submarine volcanoes, which host hydrothermal systems, mineral deposits and biomediated processes.
- Recommendations for volcanic crisis management, public awareness and preparedness through an improved understanding of the hazards and impacts of submarine volcanoes.

Share:
Co-organized as GMPV5.18
Convener: Paraskevi Nomikou | Co-conveners: Magnus Tumi Gudmundsson, Marie Dolores Jackson, Steffen Jørgensen
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room L8
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X3
BG1.68

The European countries are often recognised as the cradle of some of the world’s most important cultural heritage in stone. The cultural, artistic and social importance of stone monuments and lithic works of art evidences the general need to safeguard our praiseworthy cultural heritage. Unfortunately, we are confronted with some problems concerning their conservation, such as the increase of atmospheric contamination, the complex interactions between physical, chemical and biological factors, vandalism, lack of maintenance, and inefficient conservation treatments. This session will focus on the novel approaches that have been recently developed in the field of stone cultural heritage. The new emerging technologies, together with the variety of strategies, methodologies and biotechnological approaches available today show the wide range of possibilities that can be applied to stone heritage conservation. We invite studies devoted to: (i) novel tools for the identification of microorganisms and metabolites responsible for stone biodeterioration; (ii) biomaterials used for the preservation of granite and limestone materials; (iii) natural products from plants or microorganisms as innovative bioactive compounds for controlling biodeterioration; (iv) biotechnological approaches for the preservation of stone-built heritage and removal of sulphates, nitrates or organic substances from stone walls; (v) bioremediation strategies for building restoration. Experimental design setups, laboratory-based assays and field tests are also welcomed.

Share:
Co-organized as ERE7.3/NH2.4
Convener: Patricia Sanmartín | Co-conveners: Ana Z. Miller, Domenico Pangallo, Guadalupe Piñar Larrubia
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall A
GMPV5.1

The session deals with the documentation and modelling of the tectonic, deformation and geodetic features of any type of volcanic area, on Earth and in the Solar System. The focus is on advancing our understanding on any type of deformation of active and non-active volcanoes, on the associated behaviours, and the implications for hazards. We welcome contributions based on results from fieldwork, remote-sensing studies, geodetic and geophysical measurements, analytical, analogue and numerical simulations, and laboratory studies of volcanic rocks.
Studies may be focused at the regional scale, investigating the tectonic setting responsible for and controlling volcanic activity, both along divergent and convergent plate boundaries, as well in intraplate settings. At a more local scale, all types of surface deformation in volcanic areas are of interest, such as elastic inflation and deflation, or anelastic processes, including caldera and flank collapses. Deeper, sub-volcanic deformation studies, concerning the emplacement of intrusions, as sills, dikes and laccoliths, are most welcome.
We also particularly welcome geophysical data aimed at understanding magmatic processes during volcano unrest. These include geodetic studies obtained mainly through GPS and InSAR, as well as at their modelling to imagine sources.


The session includes, but is not restricted to, the following topics:
• volcanism and regional tectonics;
• formation of magma chambers, laccoliths, and other intrusions;
• dyke and sill propagation, emplacement, and arrest;
• earthquakes and eruptions;
• caldera collapse, resurgence, and unrest;
• flank collapse;
• volcano deformation monitoring;
• volcano deformation and hazard mitigation;
• volcano unrest;
• mechanical properties of rocks in volcanic areas.

Share:
Co-organized as G3.10/NH2.5/TS10.2
Convener: Valerio Acocella | Co-conveners: Agust Gudmundsson, Michael Heap, Sigurjon Jonsson, Virginie Pinel
Orals
| Wed, 10 Apr, 10:45–12:30, 14:00–18:00
 
Room D1
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X2
GMPV5.2

Over the past few years, major technological advances allowed to significantly increase both the spatial coverage and frequency bandwidth of geochemical and geophysical observations at active volcanoes. Establishment of high-rate GPS networks, continuous gravity meters, dense arrays of broad-band seismometers, and networks of instruments for the quantitative measurement of volcanic gas emissions now permits an unprecedented, multi-parameter vision of the surface manifestations of mass transport beneath volcanoes. Accompanying these progresses are new models and processing techniques leading to innovative paradigms for the interpretation and inversion of observational data. Within this context, this session aims at bringing together a multidisciplinary audience to discuss about the most recent innovations in monitoring approaches and to present observations, methods and models that increase our understanding of volcanic processes.

We welcome contribution related to (1) New instruments and techniques for the measurement of geophysical and geochemical parameters, from in-situ methods to ground-, air- and space-based remote sensing techniques; (2) Reports of significant case histories, documenting the relationships between the measured parameters and the evolving volcanic processes; (3) New modelling frameworks for the interpretation of the observed data, and their significance in terms of eruption forecasting.

The session will provide an opportunity to discuss volcanic activity from a monitoring perspective on a wide range of volcanoes. We therefore encourage submission of papers that are easily understandable to a broad, multi-disciplinary audience.

Share:
Co-organized as AS3.28/NH2.7/SM5.9
Convener: Jurgen Neuberg | Co-conveners: Evgenia Ilyinskaya, Thomas R. Walter
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room -2.21
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2
GMPV5.12

Volcanic edifices consist of diverse suites of pyroclastic successions, originated from primary (e.g. tephra fall, lava flow) and reworking processes (e.g. alluvial activity). The volcanoclastic sediments have witnessed the magma fragmentation and subsequent transportation mechanism as flow, turbulent current or tephra fall. Such pyroclastic deposits therefore hold key evidence to understand volcano-stratigraphy, eruption re-occurrence rates, and dominant transportation modes. This session aims to discuss sedimentary and volcanological aspects of volcanoclastic deposits. We invite presentations covering (1) field-based description and interpretation of volcanoclastic sediments, (2) reconstruction of eruptive and sediment transport processes, (3) experimental and numerical simulation of volcano-related sediment transport, and (4) development of new methodologies to understand the formation of volcanoclastic sediments. These topics are critical to understand volcanic phenomena and to improve upon existing volcanic monitoring efforts, and to forecast volcanic hazards in the future.

Share:
Co-organized as NH2.9/SSP3.12, co-sponsored by IAVCEI-CVS
Convener: Gabor Kereszturi | Co-conveners: Eric Breard, Andrea Di Capua, Gonca Gençalioğlu-Kuşcu, Alison Rust
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X2
GMPV5.15

Glaciers and volcanoes interact in a number of ways, including instances where volcanic/geothermal activity alters glacier dynamics or mass balance, via subglacial eruptions or the deposition of supraglacial tephra. Glaciers can also impact volcanism, for example by directly influencing mechanisms of individual eruptions resulting in the construction of distinct edifices. Glaciers may also influence patterns of eruptive activity when mass balance changes adjust the load on volcanic systems. However, because of the remoteness of many glacio-volcanic environments, these interactions remain poorly understood.
In these complex settings, hazards associated with glacier-volcano interaction can vary from lava flows to volcanic ash, lahars, pyroclastic flows or glacial outburst floods. These can happen consecutively or simultaneously and affect not only the earth, but also glaciers, rivers and the atmosphere. As accumulating, melting, ripping or drifting glaciers generate signals as well as degassing, inflating/ deflating or erupting volcanoes, the challenge is to study, understand and ultimately discriminate these potentially coexisting signals. We wish to fully include geophysical observations of current and recent events with geological observations and interpretations of deposits of past events.
We invite contributions that deal with the mitigation of the hazards associated with ice-covered volcanoes, that improve the understanding of signals generated by ice-covered volcanoes, or studies focused on volcanic impacts on glaciers and vice versa. Research on recent activity is especially welcomed. This includes geological observations e.g. of deposits in the field or remote-sensing data, together with experimental and modelling approaches. We also invite contributions on past activity and glaciovolcanic deposits. We aim to bring together scientists from volcanology, glaciology, seismology, geodesy, hydrology, geomorphology and atmospheric science in order to enable a broad discussion and interaction.

Share:
Co-organized as CR5.9/GM9.5/NH2.11
Convener: Iestyn Barr | Co-conveners: Eva Eibl, Magnus Tumi Gudmundsson, Kelly Russell, gioachino roberti, Adelina Geyer, Brent Ward
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
GMPV5.5 | PICO Media

Volcanic Islands are environments created by the growth of volcanoes in the sea, modified by geologic, environmental, biological and human activity. They are highly varied in geology, terrain, environment and social makeup. They are fragile environments in that they respond rapidly to global or local changes in a way that links geology, social activity and environment. Dealing with a complex object such as volcanic island requires a multidisciplinary approach on their on-land and submarine processes that crosses scientific, social and economic boundaries. From a geological and geophysical perspective there are numerous aspects that need to be addressed to acquire a comprehensive picture of how volcanic islands are born, grow up, evolve and die. These include their geodynamic setting, magmatism, volcanism, hydrothermalism, tectonics, and erosion and material transport, as well as their associated hazards and risks, environmental change record, or energy and economic resources. With the aim at integrating all this multidisciplinary research into a single forum of discussion, we offer this scientific session on Volcanic Islands, in which any geological and geophysical research on such complex environments will be more than welcome.

Share:
Co-organized as GD6.12/NH2.12
Convener: Joan Marti | Co-conveners: Patrick Bachelery, Armann Hoskuldsson
PICOs
| Tue, 09 Apr, 08:30–10:15
 
PICO spot 3

NH3 – Landslide Hazards

NH3.1

Rockfalls, rockslides and rock avalanches are fundamental modes of erosion on steep hillslopes, and among the primary hazards in steep alpine terrain. To better understand the processes driving rock slope degradation, mechanisms contributing to the triggering, transport, and deposition of resulting rock slope instabilities, and mitigation measures for associated hazards, we must develop insight into both the physics of intact and rock mass failure and the dynamics of transport processes. This session aims to bring together state-of-the-art methods for predicting, assessing, quantifying, and protecting against rock slope hazards. We seek innovative contributions from investigators dealing with all stages of rock slope hazards, from weathering and/or damage accumulation, through detachment, transport and deposition, and finally to the development of protection and mitigation measures. In particular, we seek studies presenting new theoretical, numerical or probabilistic modelling approaches, novel data sets derived from laboratory, in situ, or remote sensing applications, and state-of-the-art approaches to social, structural, or natural protection measures.

Share:
Co-organized as GM7.6
Convener: Axel Volkwein | Co-conveners: Andreas Ewald, Anne Voigtländer, Michael Krautblatter
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room M2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X3
NH3.2 | PICO

Climate changes (CC) are expected affecting weather forcing regulating the triggering and reactivation of slope movements. The influence of CC on landslides can be different, according to the area, the time horizon of interest and the actual trends of socio-economic factors driving greenhouse gases concentration. However, even the simple identification of weather patterns regulating landslide occurrence represents a not trivial issue, also assuming steady conditions, due to crucial role played by geomorphological details.
In last years, such elements partly prevented the investigations aimed to assess how CC influence slope stability at different temporal and spatial scales.
In this regard, the Session has the main aim to gather test cases and investigations carried out in different geographical contexts in evaluation of ongoing and future landslide activity.
Researches may concern: (i) modeling of future slope stability conditions exploiting downscaled climate projections or (ii) analyses of historical records of landslides (using both historical research or paleo-evidences) and climate variables and their combinations.
Analysis at different detail from slope to regional scale to global scale, considering variations in landslide occurrence, frequency, susceptibility, hazard and risk result of interest. Nevertheless, studies considering the coupled effect of environmental (e.g., land use/cover) and climate changes will be taken into account.

Share:
Co-organized as CL2.24
Convener: Stefano Luigi Gariano | Co-conveners: Fausto Guzzetti, Luciano Picarelli, Guido Rianna
PICOs
| Mon, 08 Apr, 08:30–10:15
 
PICO spot 1
NH3.3

Weathering, tectonics, gravitational and volcanic processes can transform the regular sediment delivery from unstable slopes in catastrophic landslides. Mass spreading and mass wasting processes can potentially evolve in rapid landslides are among the most dangerous natural hazards that threaten people and infrastructures, directly or through secondary events like tsunamis.

Documentation and monitoring of these phenomena requires the adoption of a variety of methods. The difficulties in detecting their initiation and propagation have progressively prompted research into a wide variety of monitoring technologies. Nowadays, the combination of distributed sensor networks and remote sensing techniques represents a unique opportunity to gather direct observations. A growing number of scientists with diverse backgrounds are dealing with the monitoring of processes ranging from volcano flak deformations to large debris flows and lahars. However, there is a need of improving quality and quantity of both documentation procedures and instrumental observations that would provide knowledge for more accurate hazard assessment, land-use planning and design of mitigation measures, including early warning systems. Successful strategies for hazard assessment and risk reduction would imply integrated methodology for instability detection, modeling and forecasting. Nevertheless, only few studies exist to date in which numerical modelling integrate geological, geophysical, geodetic studies with the aim of understanding and managing of terrestrial and subaqueous volcano slope instability.

Scientists working in the fields of hazard mapping, modelling, monitoring and early warning are invited to present their recent advancements in research and feedback from practitioners and decision makers. We encourage multidisciplinary contributions that integrate field-based on-shore and submarine studies (geological, geochemical), geomorphological mapping and account collection, with advanced techniques, as remote sensing data analysis, geophysical investigations, ground-based monitoring systems, and numerical and analogical modelling of volcano spreading, slope stability and debris flows.

Share:
Co-organized as GI4.11/GM7.8/GMPV7.3/SSS13.16
Convener: Velio Coviello (deceased) | Co-conveners: Marcel Hürlimann, Alessandro Bonforte, Federico Di Traglia, Odin Marc, Patrick Meunier, Sebastian von Specht
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room M2
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X3
NH3.4

Among the many mitigation measures available for reducing the risk to life related to landslides, early warning systems certainly constitute a significant option available to the authorities in charge of risk management and governance. Landslide early warning systems (LEWS) are non-structural risk mitigation measures applicable at different scales of analysis: slope and regional. Systems addressing single landslides at slope scale can be named local LEWS (Lo-LEWS), systems operating over wide areas at regional scale are referred to as territorial systems (Te-LEWSs). An initial key difference between Lo-LEWSs and Te-LEWSs is the knowledge “a priori” of the areas affected by future landsliding. When the location of future landslides is unknown and the area of interest extends beyond a single slope, only Te-LEWS can be employed. Conversely, Lo-LEWSs are typically adopted to cope with the risk related to one or more known well-identified landslides.

Independently by the scale of analysis, the structure of LEWS can be schematized as an interrelation of four main modules: setting, modelling, warning, response. However, the definition of the elements of these modules and the aims of the warnings/alerts issued considerably vary as a function of the scale at which the system is employed.

The session focuses on landslide early warning systems (LEWSs) at both regional and local scales. The session wishes to highlight operational approaches, original achievements and developments useful to operate reliable (efficient and effective) local and territorial LEWS. Moreover, the different schemes describing the structure of a LEWS available in literature clearly highlight the importance of both social and technical aspects in the design and management of such systems.

For the above-mentioned reasons, contributions addressing the following topics are welcome:
• rainfall thresholds definition;
• monitoring systems for early warning purposes;
• warning models for warning levels issuing;
• performance analysis of landslide warning models;
• communication strategies;
• emergency phase management;
• landslide risk perception.

Share:
Co-organized as SSS2.16
Convener: Luca Piciullo | Co-conveners: Søren Boje, Stefano Luigi Gariano, Samuele Segoni
Orals
| Fri, 12 Apr, 14:00–15:45
 
Room M2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X3
NH3.6

Landslides are ubiquitous geomorphological phenomena with potentially catastrophic consequences. In several countries landslide mortality can be higher than that of any other natural hazard. Predicting landslides is a difficult task that is of both scientific interest and societal relevance that may help save lives and protect individual properties and collective resources. The session focuses on innovative methods and techniques to predict landslide occurrence, including the location, time, size, destructiveness of individual and multiple slope failures. All landslide types are considered, from fast rockfalls to rapid debris flows, from slow slides to very rapid rock avalanches. All geographical scales are considered, from the local to the global scale. Of interest are contributions investigating theoretical aspects of natural hazard prediction, with emphasis on landslide forecasting, including conceptual, mathematical, physical, statistical, numerical and computational problems, and applied contributions demonstrating, with examples, the possibility or the lack of a possibility to predict individual or multiple landslides, or specific landslide characteristics. Of particular interest are contributions aimed at: the evaluation of the quality of landslide forecasts; the comparison of the performance of different forecasting models; the use of landslide forecasts in operational systems; and investigations of the potential for the exploitation of new or emerging technologies e.g., monitoring, computational, Earth observation technologies, in order to improve our ability to predict landslides. We anticipate that the most relevant contributions will be collected in the special issue of an international journal.

Share:
Co-organized as GM7.10
Convener: Filippo Catani | Co-conveners: Xuanmei Fan, Fausto Guzzetti, Binod Tiwari
Orals
| Thu, 11 Apr, 10:45–12:30, 14:00–18:00
 
Room L6
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X3
NH3.8

This session aims to discuss hydrology related to landslide occurrence both on local and regional scale. It focuses on the detailed analysis and modelling of hydrological processes on hillslope and catchment scale in order to improve our understanding and prediction of the spatio-temporal patterns of landslide triggering and slope deformation mechanisms.

Water circulation within a catchment and the resultant transient changes in both shallow and deep hydrological systems is the most common controlling and triggering factor of slope movements. However, incorporation of hydrological process knowledge in slope failure analysis, such as water-rock interaction, water storage, dynamic preferential flows or the influence of frost conditions to name a few, still lags behind. Also, the inclusion of regional hydrological information in rainfall thresholds analysis is underdeveloped. The research frontiers are connected with the complexity of real landslides such as the difficulty to monitor groundwater levels or soil moisture contents in unstable terrain and over large areas, the difficulty to understand the water pathways within heterogeneous regolith soils and fractured bedrock, which are the characteristic substratum where landslides occur, and the complexity of dynamically quantifying and predicting the hydrological exchange between a potentially unstable slope and its surroundings.

We invite research ranging from unsaturated zone, hillslope processes and regional hydrology which are applied to landslide research in a broad sense: ranging from soil slips to large scale deep-seated slope deformation. The session will give time to both laboratory and field monitoring studies, preferably quantitative, and based on novel measurement and modelling techniques. We invite pioneering research that includes hydrological information in local and regional hazard assessment. Moreover, we welcome studies that incorporate hydrological process knowledge in the geotechnical analysis and modelling setting the next step to improve landslide hazard analysis.

Share:
Co-organized as HS2.2.6
Convener: Thom Bogaard | Co-conveners: Paolo Frattini, Roberto Greco, Dominika Krzeminska, Jean-Philippe Malet
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room L1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
NH3.10

Over the last decade, many researchers and practitioners have contributed to consolidating a landslide and debris flows risk management framework, enhancing techniques and pioneering applications to problems that are otherwise difficult to resolve using conventional methods. However, as extreme rainfall events occur with increasing frequency due to climate change, the threat posed by compound geohazards will inevitably increase. Clearly, a new paradigm of mountain hazard mitigation and management is required. Therefore, developing risk analysis models, which could integrate the hazard dynamic process by using both practical experience and numerical simulation, is a key scientific challenge for effective disaster risk reduction. This session focuses on disaster risk analysis and management methods as well as their coherence with the mechanisms of compound hazards, including initiation, transportation, and deposition. The topics of the presentations include but are not limited to:
(a) Advanced methodology of data collection in the field, the improvement and development of sensor technology and the real time data collection of debris flow and landslides hazards for a better dimensioning of mitigation measures.
(b) Numerical simulation of compound geohazards at the local scale and global scale.
(c) Innovative applications remote sensing data for hazard, vulnerability and risk mapping.
(d) Advances in risk analysis methods by integrating new technologies in hazard data retrieving, hazard simulation and vulnerability assessment of elements at risk.
(e) Optimizing the engineering design for current hazard mitigation and control structure and develop new techniques for disaster control.
Additionally, we welcome submissions concentrating on big data processing, machine learning related to vulnerability, and resilience of the elements at risk.

Share:
Convener: Johannes Huebl | Co-conveners: Giulia Bossi, Yifei Cui, Alessandro Leonardi
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30
 
Room L1
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X3
NH3.11

In recent years, debris flows are becoming more frequent and larger in magnitude due to global climate change, resulting in the loss of human life and substantial damage to infrastructure. In light of such trends, there is increasing national interest for the development of proactive technologies to prevent and mitigate debris flow disasters. Although many disaster prevention facilities are being built, there are still questions regarding the accuracy and reliability of the methodologies and techniques being utilized for the design of these structures. Therefore, in order to improve existing disaster prevention measures and effectively reduce damage, it is necessary to make scientific and technological strides at each stage of the design process of disaster prevention facilities. This session mainly focuses on methods for the prevention and mitigation of debris flow disasters, including the following topics:
(1) Advanced data collection methods for the collection of site properties such as the utilization of UAV-based LiDAR, spectroscopic techniques, etc.
(2) Prediction techniques that provide quantitative information of debris flow through big data analysis, machine learning models, and numerical modeling
(3) Performance analysis of various types of disaster prevention facilities based on small-scale & large-scaled experiments and numerical simulations
(4) Optimum design of disaster prevention facilities through sensitivity analysis and parametric studies
We also welcome submissions that focus on new techniques and design methodologies related to the 4th industrial revolution.

Keywords
Debris flow, Disaster prevention facilities, Optimum design, Experimental and numerical studies, Big data, Machine learning techniques

---------------
Landslides are one of the most widespread and destructive natural hazards in the world. However, it is possible to reduce hazards caused by the landslides by monitoring and/or early warning systems. Today, lots of systems are available for the purpose and new systems have been developing continuously. The aim of this session is to gain a complete knowledge about the landslide monitoring and early warning systems by introducing different systems used, learning new technologies about the topic, investigating their properties, comparing the techniques and devices.

Keywords: Landslide monitoring systems, early warning systems

Share:
Co-organized as GI4.18
Convener: Tae-Hyuk Kwon | Co-conveners: Yun Tae Kim, Anders Solheim, Arzu Arslan Kelam, Mustafa K Koçkar
Orals
| Wed, 10 Apr, 08:30–10:00
 
Room 1.61
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X3
NH3.15

Remarkable technological progress in remote sensing and geophysical surveying, together with the recent development of innovative data treatment techniques are providing new scientific opportunities to investigate landslide processes and hazards all over the world. Remote sensing and geophysics, as complementary techniques for the characterization and monitoring of landslides, offer the possibility to effectively infer and correlate an improved information of the shallow -or even deep- geological layers for the development of conceptual and numerical models of slope instabilities. Their ability to provide integrated information about geometry, rheological properties, water content, rate of deformation and time-varying changes of these parameters is ultimately controlling our capability to detect, model and predict landslide processes at different scales (from site specific to regional studies) and over multiple dimensions (2D, 3D and 4D).

This session welcomes innovative contributions and lessons learned from significant case studies using a myriad of remote sensing and geophysical techniques and algorithms, including optical and radar sensors, new satellite constellations (including the emergence of the Sentinel-1A and 1B), Remotely Piloted Aircraft Systems (RPAS) / Unmanned Aerial Vehicles (UAVs) / drones, high spatial resolution airborne LiDAR missions, terrestrial LIDAR, Structure-from-Motion (SfM) photogrammetry, time-lapse cameras, multi-temporal Synthetic Aperture Radar differential interferometry (DInSAR), GPS surveying, Seismic Reflection, Surface Waves Analysis, Geophysical Tomography (seismic and electrical), Seismic Ambient Vibrations, Acoustic Emissions, Electro-Magnetic surveys, low-cost (/cost-efficient) sensors, commercial use of small satellites, Multi-Spectral images, Real time monitoring, in-situ sensing, etc.

The session will provide an overview of the progress and new scientific approaches of Earth Observation (EO) applications, as well as of surface- and borehole-based geophysical surveying for investigating landslides. A special emphasis is expected not only on the collection but also on the interpretation and use of high spatiotemporal resolution data to characterize the main components of slope stability and dynamics, including the type of material, geometrical and mechanical properties, depth of water table, saturation conditions and ground deformation over time. The discussion of recent experiences and the use of advanced processing methods and innovative algorithms that integrate data from remote sensing and geophysics with other survey types are highly encouraged, especially with regard to their use on (rapid) mapping, characterizing, monitoring and modelling of landslide behaviour, as well as their integration on real-time Early Warning Systems and other prevention and protection initiatives. Other pioneering applications using big data treatment techniques, data-driven approaches and/or open code initiatives for investigating mass movements using the above described techniques will also be considered on this session.

We invited prof. Denis Jongmans (Isterre, Université Grenoble Alpes, France), as guest speaker for the session.

Share:
Co-organized as ESSI1.6/GI4.19/GM7.13/SSS13.15, co-sponsored by JpGU
Convener: Antonio Abellan | Co-conveners: Janusz Wasowski, Masahiro Chigira, André Stumpf, Jan Burjanek
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room 1.61
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X3
NH3.16

Large slope instabilities have been frequently recognised in areas with different lithological (sedimentary, igneous, metamorphic rocks) and geological domains (cordillera, volcanic, etc.). Slow to very fast moving, complex mass movements have been recognized and sometimes described as strongly interrelated. Many types of slope instabilities can be grouped within this broad class, each presenting different types of hazard and risk. Some major aspects of these slope instabilities are still understudied and debated, namely:
- their regional distribution and relevance;
- triggering and controlling factors, including possible climatic changes;
- hydrological boundary conditions and evolution or control of internal hydrogeological conditions;
- mechanical controls in terms of physical mechanical properties of failure surfaces and shear zones
- dating of initial movements and reactivation episodes;
- style and state of past and present activity;
- passive and/or active control by structural-tectonic elements of the bedrock geology;
- possible styles of evolution and consequent modeling approaches;
- assessment of related hazard;
- influence of external anthropogenic factors and effects on structures and infrastructures (e.g. tunnels, dams, bridges);
- role on the general erosional and sediment yield regime at the local or mountain belt scale;
- best technologies and approaches for implementing a correct monitoring and warning system and for the interpretation of monitoring data in terms of landslide activity and behavior.

Study of these instabilities requires a multidisciplinary approach involving geology, geomorphology, geomechanics, hydro-geochemistry, and geophysics. These phenomena have been recognized on Earth as well as on other planetary bodies (e.g. Mars, Moon).
Trenching and drilling can be used for material characterization, recognition of episodes of activity, and sampling in slow slope movements. At the same time many different approaches can be used for monitoring and establishing of warning thresholds and systems for such phenomena.
Geophysical survey methods can be used to assess both the geometrical and geomechanical characteristics of the unstable mass. Different dating techniques can be applied to determine the age and stages of movement. Many modeling approaches can be applied to evaluate instability and failure (e.g. displacement and velocity thresholds), triggering mechanisms (e.g. rainfall, seismicity, volcanic eruption, deglaciation), failure propagation, rapid mass movements (rock avalanches, debris avalanches and flows), and related secondary failures (rock fall and debris flows).
Studies of hydraulic and hydrologic boundary conditions and hydrochemistry are involved, both at the moment of initial failure and, later, during reactivation. The impacts of such instabilities on structures and human activities can be substantial and of a variety of forms (e.g. deformation or failure of structures and infrastructure, burial of developed areas, etc.).
Furthermore, the local and regional sediment yield could be influenced by the landsliding activity and different landslides (e.g. type, size) can play different roles.

Share:
Co-organized as GM7.7/HS11.42, co-sponsored by JpGU
Convener: Giovanni Crosta | Co-conveners: Federico Agliardi, Masahiro Chigira, Irene Manzella
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room L1
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X3
GM3.1

Mountain environments host highly dynamical and widespread erosion, sedimentation, and weathering processes. These processes cover a wide range of temporal and spatial scales, from glacial & periglacial erosion, mechanical & chemical weathering, rock fall, debris flows, landslides, to river aggradation & incision. These processes react to a wide spectrum of external and internal forcings, including permafrost retreat, strong precipitation events, climate change, earthquakes or sudden internal failure. Measuring the dynamical interplay of erosion, sedimentation as well as quantifying their rates and fluxes is an important part of source to sink research but it is highly challenging and often limited by difficult terrain. Furthermore, these dynamical processes can threaten important mountain infrastructures and need to be understood and quantified for a better societal and engineering preparation to the natural hazards they pose.

We welcome contributions investigating:
- sediment mobilization and deposition
- links between erosion, weathering, and the carbon cycle
- concepts of dynamics and connectivity of sediments and solutes
- quantification of erosion, sedimentation, and weathering fluxes in space and time
- sediment travel times and transport processes
- interaction of stabilizing and destabilizing processes on the slopes
We invite presentations that focus on conceptual, methodological, or modelling approaches or a combination of those in mountain environments and particularly encourage early career scientists to apply for this session.

Share:
Co-organized as CR4.8/HS9.2.4/NH3.19/SSS2.20
Convener: Luca C Malatesta | Co-conveners: Jan Henrik Blöthe, Aaron Bufe, Kristen Cook, Sabine Kraushaar
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room D3
Posters
| Attendance Thu, 11 Apr, 08:30–10:15
 
Hall X2
GM3.3

In the past two decades, connectivity has emerged as a relevant conceptual framework for understanding the transfer of water and sediment through landscapes. In geomorphology, the concept has had particular success in the fields of fluvial geomorphology and soil erosion to better explain rates and patterns of hydro-geomorphic geomorphic change in catchment systems. Although much progress has been made in the understanding of the physical processes that control the flows of matter through the landscape, applying this understanding across a range of scales has long hampered progress.
This session invites contributions from all areas of geomorphology (incl. soil science and hydrology) illustrating or identifying the role of connectivity for geomorphology on a local, regional or global scale. Specific themes we would like to promote are:
- advancement of the theory of connectivity, including sound and unambiguous definitions of
connectivity and related parameters,
- methodology development for measuring connectivity in field and laboratory settings,
having a special focus on experiments for conceptualizing the different processes involved,
- the development and application of suitable models and indices of connectivity,
- determining how the concept can be used to enable sustainable land and water management
The session is organized by the IAG-working group “Connectivity in geomorphology” aiming to develop an international network of connectivity scientists, to share expertise and develop a consensus on the definition and scientific agenda regarding the emerging field of connectivity in geomorphology.

Share:
Co-organized as HS9.2.10/NH3.23/SSS3.10
Convener: Ronald Pöppl | Co-conveners: Anthony Parsons, Manuel López-Vicente, Ben Jarihani, Pasquale Borrelli, Roy Sidle, Jacky Croke, Ellen Wohl
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room 0.31
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
GM7.2

Denudation, including both chemical and mechanical processes, is of high relevance for Earth surface and landscape development and the transfers of solutes, nutrients and sediments from slope and headwater systems through the main stem of drainage basin systems to ocean basins. Denudational slope and fluvial processes are controlled by a range of environmental drivers and can be significantly affected by man-made activities. Only if we have a better quantitative knowledge of drivers, mechanisms and rates of Holocene to contemporary denudational processes across a range of different climatic environments, an improved assessment of the possible effects of global environmental changes (e.g., higher frequencies of extreme rainfall events, accelerated permafrost thawing, rapid glacier retreat), anthropogenic impacts and other disturbances (e.g., land use, fires, earthquakes) on denudation can be achieved.

This session combines contributions on denudational hillslope and fluvial processes, sedimentary budgets and landscape responses to environmental changes in different morphoclimates, including both undisturbed and anthropogenically modified landscapes. The presented studies apply a diverse set of tools and data analyses, including up to date field measurements and monitoring techniques, remotely sensed/GIS-based analyses, modelling, geochemical and fingerprinting measurements and techniques, dendrochronological approaches, and cosmogenic radionuclide dating.

This session is organized by the I.A.G./A.I.G. Working Group on Denudation and Environmental Changes in Different Morphoclimatic Zones (DENUCHANGE).

Share:
Co-organized as BG2.20/NH3.24/SSS13.12
Convener: Katja Laute | Co-conveners: Achim A. Beylich, Małgorzata Mazurek, Ana Navas, Olimpiu Pop
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room 0.31
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X2
GM7.1 | PICO

Analysing the geomorphic response to environmental change is crucial to improve the understanding, interpretation and prediction of surface process activity. Environmental drivers such as land cover and land use change, climate variability and tectonic activity are mutable in space and time, which renders the analysis of their impact on Earth surface dynamics anything but trivial. In turn, geomorphic processes have a strong impact on both natural ecosystems and artificially transformed land surfaces, with consequences ranging from increasing environmental diversity to economic damage.
This session aims to cluster latest advances in land surface research that address interrelationships between land cover dynamics, climate, evolving topography and geomorphic processes. Herein, the focus is set on the analysis, modelling and prediction of land surface processes that are linked to:
1) Natural and anthropogenic land cover dynamics, including land use changes, management practices, cultivation of field crops or grassland management, soil reinforcement of different vegetation types and parameterisation of prediction models.
2) Climate variability on a variety of spatial and temporal scales, from freeze-thaw cycles, monsoonal precipitation and extreme climatic events to Plio-Pleistocene glacial cycles and Late-Pleistocene to Holocene climatic changes.
Studies are welcome that pay heed on the geomorphic response to changes in land cover or climate, as well as the resulting feedbacks between land cover, climate and Earth surface dynamics over different temporal and spatial scales.

Share:
Co-organized as BG2.21/NH3.25/SSS13.11
Convener: Elmar Schmaltz | Co-conveners: Günther Prasicek, Stefan Steger, Jörg Robl, Pierre Valla
PICOs
| Mon, 08 Apr, 16:15–18:00
 
PICO spot 1
SSS12.1

Analytical methods are the foundation of every scientific discipline. Therefore have they very important role in soil science and in all other related disciplines. From the choice of analytical method there depends the accuracy of researches and quality of the findings, and according to this the novelty and usefulness for society. Today we can see the usage of a very wide spectrum of methods and techniques in soil science from quite simple classical methods up to high-precision methods based on high-tech instruments. The wise usage of analytical methods and techniques allows the investigation of the processes and mechanisms in soils and to assess the status of the environment. Unfortunately, the importance of their utilisation in soil analysis is often underestimated. The main purpose of our session is to emphasize the importance of the analytical methods used to achieve the results in soil research.

The aim of this session is to present the usage of different laboratory methods and techniques in soil research and give possibility for researchers to exchange their experiences. The special goal of this session will be to promote a wider use of innovative analytical methods and hyphenated instrumental techniques for separation and determination of chemical and biochemical compounds of both known and unknown structures in mineral and organic soils, sediments, substrates and composts. Modern analytical methods and hyphenated techniques can be utilized for the investigation of the processes and mechanisms in soils like formation, transformation, and conversion.
The session is an opportunity to present the works describing the usage of wide range of equipment, from smartphones to MS in the analysis of soils. The session is not limited to these techniques or methods. Works describing the methods of soil physical analysis are accepted also. The studies connected with methodology of soil chemical analysis and particularly soil organic matter are welcome.

Share:
Co-organized as BG2.28/NH3.26
Convener: Tonu Tonutare | Co-conveners: Viia Lepane, Manfred Sager
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room G1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X1
GD6.3 | PICO

The Azores archipelago is located in the triple junction of the North American, Eurasian and Nubian tectonic plates. The origin of the magmatism in the archipelago remains controversial even though it has generally been associated with a mantle plume interacting with the local structural regime. Due to this peculiar geodynamic setting, earthquakes, subaerial and submarine volcanic eruptions may occur in the archipelago. The identification of possible signs of unrest of the volcanoes is challenging and much of the recent volcanic activity is characterized by the occurrence of seismic swarms, ground deformation episodes and the presence of secondary manifestations of volcanism. The archipelago is located in the vicinity of the central Northern Atlantic Ocean, what makes the islands vulnerable to storms, floods and landslides. The islands are thus ideally suited to apply different multidisciplinary methodologies for the study of geological hazards.
This session aims to focus on the Azores submarine plateau and islands as a natural laboratory for the study of different geological processes. Here, we aim at contributions from the different fields of Geology, Geophysics and Geochemistry dealing with the geodynamic context of the Azores, studying the evolution and geological diversity of the Azores and evaluate hazards that can affect the islands.

Share:
Co-organized as GMPV7.10/NH3.27/TS9.16
Convener: Fátima Viveiros | Co-conveners: Christoph Beier, Ulrich Kueppers, Jose Pacheco, Zhongwei Zhao
PICOs
| Mon, 08 Apr, 16:15–18:00
 
PICO spot 3
GM2.1 | PICO Media

This session aims to bridge the existing gap between the process-focused fields (hydrology, geomorphology, soil sciences, natural hazards, planetary science, geo-biology, archaeology) and the technical domain (engineering, computer vision, machine learning, and statistics) where terrain analysis approaches are developed.
The rapid growth of survey technologies and computing advances and the increase of data acquisition from various sources (platforms and sensors) has led to a vast data swamp with unprecedented spatio-temporal range, density, and resolution (from submeter to global scale data), which requires efficient data processing to extract suitable information. The challenge is now the interpretation of surface morphology for a better understanding of processes at a variety of scales, from micro, to local, to global.

We aim to foster inter-disciplinarity with a focus on new techniques in digital terrain analysis and production from any discipline which touches on geomorphometry, including but not exclusive to geomorphology (e.g., tectonic/volcanic/climatic/glacial), planetary science, archaeology, geo-biology, natural hazards, computer vision, remote sensing, image processing.
We invite submissions related to the successful application of geomorphometric methods, innovative geomorphometric variables as well as their physical, mathematical and geographical meanings. Submissions related to new techniques in high-resolution terrain or global scale data production and analysis, independent of the subject, as well as studies focused on the associated error and uncertainty analyses, are also welcome. We actively encourage contributors to present work “in development”, as well as established techniques being used in a novel way. We strongly encourage young scientists to contribute and help drive innovation in our community, presenting their work to this session.

We want to foster collaboration and the sharing of ideas across subject-boundaries, between technique developers and users, enabling us as a community to fully exploit the wealth of knowledge inherent in our digital landscape. Just remember, the driver for new ideas and applications often comes from another speciality, discipline or subject: Your solution may already be out there waiting for you!

Share:
Co-organized as GI4.17/NH3.29/NP9.10/PS5.7/SSS13.9
Convener: Giulia Sofia | Co-conveners: Susan Conway, John K. Hillier, Michael Smith
PICOs
| Tue, 09 Apr, 10:45–12:30
 
PICO spot 4
SSS10.9

Mediterranean and other semi-arid regions are prone to cyclic droughts and flood events due to their high climate variability. Agricultural and forest practices have evolved to adapt to these conditions to increase productivity and the economic viability of these activities. Soil and water conservation (SWC) measures have been implemented in these regions to preserve natural resources while maintaining and/or increasing agriculture productivity. Currently a large variety of traditional SWC and relatively modern recent SWC approaches co-exist. However, it still been difficult to provide a robust appraisal of their effectiveness, or a detailed understanding to facilitate its adoption in situations different from those in which they have been developed, mostly through a combination of technical skills and trials and errors in commercial conditions. Finally, the use of SWC measures takes a new dimension with the prospect of climate change and the need to improve the provision of key ecosystems services.

In this frame, this session will try to promote discussion and networking among researches interested in this issue from different background, focusing on recent and past development of SWC, especially related to:
i) The effectiveness SWC measures applied in Mediterranean and other fragile environments in term of productivity, provision of ecosystem services and socio-economic impact (including both on- and off-site effects);
ii) Scientific advances in the understanding of the impact of SWC in the dynamics of hydrological and sediment fluxes, and in the spatial distribution of water and sediment sources and pathways to the improvement of best management practice (BMPs) aimed to minimize on-site and offsite erosion impacts.
iii) Advances in technologies to monitor and evaluate the efficiency of SWC and BMP by different stakeholders.
This session encompasses activities related to the implementation of Sustainable Development Goal (SDG) target 15.3 on Land Degradation Neutrality.

Share:
Co-organized as HS2.9.14/NH3.30
Convener: Jose Alfonso Gomez | Co-conveners: Rossano Ciampalini, Armand Crabit, Joao Pedro Nunes, Amandine Pastor
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X1
GM11.3

Rock coasts occupy the majority of the World's shoreline and there continues to be increasing scientific interest in the geomorphology of these coasts. Contemporary rock coasts are also linked to geological and sea level records when shore platforms become marine terraces. This session includes any aspect of rock coasts including; geomorphology, processes (marine, subaerial and biological), geology (lithology, structure) and management of rock coasts (hazard and conservation). Processes studies, examples of modelling and the application of dating techniques are welcome. Papers detailing the development of novel techniques for the measurement of processes, erosion rates and morphology are also welcome. Finally papers that identify future trajectories for the management and geomorphology of rock coasts are encouraged.

Share:
Co-organized as NH3.32/OS2.16
Convener: Wayne Stephenson | Co-conveners: Stefano Furlani, Lluis GOMEZ-PUJOL
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room G2
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X2
EMRP1.3

The characterisation of linked physical properties such as elasticity, strength and permeability from outcrop to crustal scales is complicated by heterogeneity, fabric anisotropy and damage in so-called “intact rock” and by geological structure and inherited fracturing in the bulk “rock mass”. Rocks can behave as continuous or discontinuous media depending on the scale of consideration and the occurrence of discrete structures (e.g. fault zones). Moreover, rock properties and inherited geological features constrain mechanical damage processes resulting in rock mass weakening, altered permeability and hydro-mechanical coupling between rock and fluids, development of brittle shear zones, and time-dependent behavior (creep).
Despite major experimental, theoretical and modelling advances, a remaining future goal is to develop meaningful, testable methods and models that allow us to quantify the relationships between fabrics and fractures related to the geomechanical behavior of rocks on different scales and in different environmental conditions (P, T, stress, strain rate, fluids). This is critical in order to unravel the complex evolution and dynamics of the Earth’s crust, and develop predictive capabilities for geohazard and energy applications.
In this session we will bring together researchers from different communities, working on problems related to quantifying the hydro-geomechanical properties and behavior of rock masses considered either as continua or discontinua. We will explore their geological controls from the micro- to macro-scale, in a range of crustal environments and geological and geohazard applications (e.g. understanding fluid movement and hydrothermal systems at volcanoes, fluid pressure and damage evolution within fault zones. rock slope instability and related geomorphic impacts, fractured reservoir exploitation, subsidence due to drainage, induced seismicity), using experimental and numerical approaches in the laboratory and the field. We especially welcome studies that adopt novel approaches and combined methodologies.

Share:
Co-organized as NH3.33
Convener: Federico Agliardi | Co-conveners: Michael Heap, Andrea Regina Biedermann, David Healy, Sergio Vinciguerra, Fabian Wadsworth, Christian Zangerl, Jackie E. Kendrick
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30, 14:00–15:45
 
Room K2
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X2

NH4 – Earthquake Hazards

NH4.2 Media

Earthquakes occur with great spatio-temporal variability, which emerges from the complex interactions between them. Significant progress is being made towards understanding spatio-temporal correlations, scaling laws and clustering, and the emergence of seismicity patterns. New models being developed in statistical seismology have direct implications for time-dependent seismic hazard assessment and probabilistic earthquake forecasting. In addition, the increasing amount of earthquake data available on local to global scales provides new opportunities for model testing.


This session focuses both on recent insights on the physical processes responsible for the distribution of earthquakes in space and time, and on new models and techniques for quantifying the seismotectonic process and its evolution. Particular emphasis will be placed on:
- physical and statistical models of earthquake occurrence;
- analysis of earthquake clustering;
- spatio-temporal properties of earthquake statistics;
- quantitative testing of earthquake occurrence models;
- implications for time-dependent hazard assessment;
- methods for earthquake forecasting;
- data analyses and requirements for model testing.

Confirmed solicited speaker: Danijel Schorlemmer (GFZ - German Research Center for Geosciences, Potsdam, Germany)

Share:
Co-organized as SM3.4
Convener: Stefania Gentili | Co-conveners: Rita Di Giovambattista, Álvaro González
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room M1
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X3
NH4.3

From the real-time integration of multi-parametric observations is expected the major contribution to the development of operational t-DASH systems suitable for supporting decision makers with continuously updated seismic hazard scenarios. A very preliminary step in this direction is the identification of those parameters (seismological, chemical, physical, biological, etc.) whose space-time dynamics and/or anomalous variability can be, to some extent, associated with the complex process of preparation of major earthquakes.
This session wants then to encourage studies devoted to demonstrate the added value of the introduction of specific, observations and/or data analysis methods within the t-DASH and StEF perspectives. Therefore studies based on long-term data analyses, including different conditions of seismic activity, are particularly encouraged. Similarly welcome will be the presentation of infrastructures devoted to maintain and further develop our present observational capabilities of earthquake related phenomena also contributing in this way to build a global multi-parametric Earthquakes Observing System (EQuOS) to complement the existing GEOSS initiative.
To this aim this session is not addressed just to seismology and natural hazards scientists but also to geologist, atmospheric sciences and electromagnetism researchers, whose collaboration is particular important for fully understand mechanisms of earthquake preparation and their possible relation with other measurable quantities. For this reason all contributions devoted to the description of genetic models of earthquake’s precursory phenomena are equally welcome. Every 2 years selected papers presented in thsi session will be proposed for publication in a dedicated Special Issue of an international (ISI) scientific journal.

Share:
Co-organized as AS4.62/EMRP2.40/ESSI1.7/GI2.13/SM3.9, co-sponsored by JpGU
Convener: Valerio Tramutoli | Co-conveners: Mariano Lisi, Pier Francesco Biagi, Katsumi Hattori, Filippos Vallianatos
Orals
| Wed, 10 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X3
NH4.4

Our capability to provide timely and reliable seismic risk estimates is an essential element towards building a resilient society, through informed decision for risk management. The scientific base of the process of seismic risk mitigation includes various seismic hazard models, developed at different time scales and by different methods, as well as the use of information as complete and reliable as possible about past seismicity.
Some recent large earthquakes caused extensive damage in areas where some models indicated low seismic hazard, leading to an increased demand for criteria to objectively assess how well seismic hazard models are performing. This session aims to tackle theoretical and implementation issues, which are essential for the development of effective mitigation strategies and include:
⇒ methods for comparison of seismic hazard models and their performance evaluation;
⇒ hazard and risk assessment of extreme seismic events;
⇒ long-term evidences about past great earthquakes (including unconventional seismological observations, such as impact on caves, ancient constructions and other deformations evidences);
⇒ earthquake hazard assessment in terms of macro-seismic intensity;
⇒ seismic risk estimation at different time and space scale.
In particular, the session will address concepts, problems, and approaches in assessing hazard related to the earthquakes that “may cause loss of life, injury or other health impacts, property damage, loss of livelihoods and services, social and economic disruption, or environmental damage” (according to UNISDR terminology). The session will include discussions of the pros and cons of deterministic, neo-deterministic, probabilistic, and intensity-based seismic hazard assessments. The latter is of special importance for Europe because of the available large historical information on macro-seismic intensities.
We invite contributions related to: hazard and risk assessment methods and their performance in applications; critical observations and constraints for seismic hazard assessment; verification methods that are suitable to quantify seismic hazard estimates and that can be applied to limited and/or heterogeneous observations (ranging from recent records of ground shaking parameters to past intensity data); seismic hazard and risk monitoring and modeling; and risk communication and mitigation.
The session will provide an opportunity to discuss best practices and share experience gained with different testing methods, including their application in different fields. We hope to highlight both the existing gaps and future research directions that could strengthen the procedures for testing and comparing performance of seismic hazard models.

Share:
Co-organized as SM3.5
Convener: Antonella Peresan | Co-conveners: Katalin Gribovszki, Vladimir Kossobokov, Elisa Varini, Mihaela Kouteva
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room M1
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X3
GM1.4

Seismic techniques are becoming widely used to detect and quantitatively characterise a wide variety of natural processes occurring at the Earth’s surface. These processes include mass movements such as landslides, rock falls, debris flows and lahars; glacial phenomena such as icequakes, glacier calving/serac falls, glacier melt and supra- to sub-glacial hydrology; snow avalanches; water storage and water dynamics phenomena such as water table changes, river flow turbulence and fluvial sediment transport. Where other methods often provide limited spatial and temporal coverage, seismic observations allow recovering sequences of events with high temporal resolution and over large areas. These observational capabilities allow establishing connections with meteorological drivers, and give unprecedented insights on the underlying physics of the various Earth’s surface processes as well as on their interactions (chains of events). These capabilities are also of first interest for real time hazards monitoring and early warning purposes. In particular, seismic monitoring techniques can provide relevant information on the dynamics of flows and unstable slopes, and thus allow for the identification of precursory patterns of hazardous events and timely warning.

This session aims at bringing together scientists who use seismic methods to study Earth surface dynamics. We invite contributions from the field of geomorphology, cryospheric sciences, seismology, natural hazards, volcanology, soil system sciences and hydrology. Theoretical, field based and experimental approaches are highly welcome.

Share:
Co-organized as CR2.9/GI4.12/GMPV7.1/HS11.55/NH4.6/SM1.4/SSS12.13
Convener: Florent Gimbert | Co-conveners: Wei-An Chao, Velio Coviello (deceased), Andrea Manconi, Anne Schöpa
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room G2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X2
ERE6.6

Hydraulic stimulation is a well-operation that aims at enhancing fluid flow at depth. It is applied to exploit unconventional hydrocarbon reservoirs with low permeability and deep geothermal resources. Induced earthquakes frequently accompany the injection of fluids into boreholes potentially leading to damage to infrastructure at the surface and thus generally raising public concern. Damage caused by such events have already terminated Enhanced Geothermal Energy projects in South Korea and Switzerland. Hence, finding safe stimulation methods is critical for future use and public acceptance of geothermal energy projects and potential other forms of energy extraction from the underground. A range of stimulation techniques have been developed to increase the permeability of low-permeable reservoirs, however, our understanding of the processes involved in the formation of hydrofracs and hydroshears and the effectiveness of these operations regarding flow enhancement are still rather limited. A series of successful mine-back experiments have been performed in a range of underground laboratories in Europe. For this session, we invite presentations covering the full range of rock mechanics experiments, underground laboratory testing, and field-scale operations aiming at improving the fundamental understanding of stimulation operations.

Share:
Co-organized as EMRP1.91/NH4.7/SM6.4
Convener: Georg Dresen | Co-conveners: Grzegorz Kwiatek, Joerg Renner
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room L2
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
SM2.1

Numerical modeling of earthquakes provides new approaches to apprehend the physics of earthquake rupture and the seismic cycle, seismic wave propagation, fault zone evolution and seismic hazard assessment.
Recent advances in numerical algorithms and increasing computational power enable unforeseen precision and multi-physics components in physics-based earthquake simulation but also pose challenges in terms of fully exploiting modern supercomputing infrastructure, realistic parameterization of simulation ingredients and the analysis of large synthetic datasets.
This session aims to bring together modelers and data analysts interested in the physics and computational aspects of earthquake phenomena. We welcome studies focusing on all aspects of the physics of various earthquakes - from slow slip events, fault mechanics and rupture dynamics, to wave propagation and ground motion analysis, to the seismic cycle and inter seismic deformation - and studies which further the state-of-the art in the related computational and numerical aspects.
We further encourage studies linking earthquake source processes to rock mechanics and the laboratory scale.

Share:
Co-organized as GD8.7/NH4.8
Convener: Alice-Agnes Gabriel | Co-conveners: Jean Paul Ampuero, Hideo Aochi
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X2
SM2.2

This session covers the broad field of earthquake source processes, and includes the topics of observing the surface deformation caused by earthquakes, imaging the rupture kinematics and simulating earthquake dynamics using numerical methods, to develop a deeper understanding of earthquake source physics. We also invite presentation that link novel field observations and laboratory experiments to earthquake dynamics, and studies on earthquake scaling properties. Of particular interest are innovative studies on quantifying the uncertainties in earthquake source-parameter estimation.
Within this framework our session also provides a forum to discuss case studies of field observation, kinematic and dynamic source modeling of recent significant earthquakes.

Share:
Co-organized as NH4.9/TS5.10
Convener: P. Martin Mai | Co-conveners: Alice-Agnes Gabriel, Henriette Sudhaus
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
SM2.4

Since 2004, there have been a number of large subduction earthquakes whose unexpected rupture features contributed to the generation of devastating tsunamis. The impact that these events had on human society highlights the need to improve our knowledge of the key mechanisms behind their origin. Advances in these areas have led to progess in our understanding of the most important parameters affecting tsunamigenesis. For example, unexpectedly large slip was observed during the 2011 Tohoku-Oki earthquake, leading to re-investigations of the geology of other subduction zones and the conditions that can lead to large slip at the trench.

In general, the large amount of geophysical data recorded at present has led to new descriptions of faulting and rupture complexity (e.g., spatial and temporal seismic rupture heterogeneity, fault roughness, geometry and sediment type, interseismic coupling, etc.). Rock physicists have proposed new constitutive laws and parameters based on a new generation of laboratory experiments, which simulate close to natural seismic deformation conditions on natural fault samples. Analog modellers now have apparati that simulate multiple seismic cycles with unprecedented realism. These represent a valuable tool for investigating how various boundary conditions (e.g., frictional segmentation, interplate roughness) influence the seismic behavior of subduction megathrusts. In addition, advances in numerical modelling now allow scientists to test how new geophysical observations, e.g. from ocean drilling projects and laboratory analyses, influence subduction zone processes over a range of temporal and spatial scales (i.e., geodynamic, seismic cycling, earthquake rupture, wave propagation modelling).

In light of these advances, this session has a twofold mission: i) to integrate recent results from different fields to foster a comprehensive understanding of the key parameters controlling the physics of large subduction earthquakes over a range of spatial and temporal scales; ii) to individuate how the tsunami hazard analysis can benefit from using a multi-disciplinary approach.

We invite abstracts that enhance interdisciplinary collaboration and integrate observations, rock physics experiments, analog- and numerical modeling, and tsunami hazard.

Share:
Co-organized as NH4.10/TS5.7
Convener: Fabrizio Romano | Co-conveners: Elena Spagnuolo, Antonio Scala, Paola Vannucchi, Fabio Corbi, Dietrich Lange, Elizabeth H. Madden, Iris van Zelst
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room -2.21
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
SM3.1

Recent catastrophic earthquakes have highlighted the importance of advancing seismic hazard models over a wide range of time frames, for example to support more reliable building codes and to track the short-term evolution of seismic sequences. Over the past years, the exponential growth of ground-motion data, short- and long-term forecasting models, hazard model test results, new engineering needs, and progress in research on earthquake predictability and ground-motion processes are creating a strong motivation for the exploration and incorporation of new concepts and methods into the next generation of probabilistic forecasts, both for long-term probabilistic seismic hazard assessment (PSHA), and operational earthquake forecasting. Owing to the important societal impact, any forecasting model has to be scientifically reliable. Prospective modeling is the best way of testing alternate hypotheses and models, and hence advancing our scientific understanding of the processes involved. Pragmatically, prospective testing provides an essential scientific contribution to improving the capacity to manage seismic hazard and risk in a wide range of forecasting time windows, for a broad range of stakeholders, including vulnerable societies. The development of such new and innovative long- and short-term forecasting/hazard models is a necessary but insufficient step: major advances in forecasting and hazard assessment require a solid testing phase that allows for model evaluation and quantifies any increase in forecasting skill over a benchmark model. 

We solicit contributions related to new developments in all aspects of long- and short-term seismic hazard and earthquake forecasting models:
   • Definition of earthquake sources and determination of activity rates and their uncertainty, including assessment of earthquake datasets, calibration of magnitude scales, representation of seismogenic sources and their geological constraints, and the emerging roles of strain and simulation-based earthquake-rupture forecasts.
   • Development of innovative earthquake forecasting models with forecast horizons of days to decades.
   • Estimation of strong ground motions and their uncertainty, development of new ground-motion models, assessment of site effects, the consideration of new parameters to characterize the intensity of shaking, and potential insights and uses of physics-based simulations of ground shaking. 
   • Testing and evaluation of hazard and earthquake forecasting models including statistical tests of 
activity rates, earthquake occurrence, calibration of ground-motion models, hazard-model parameterization and implementation, sensitivity analyses of key parameters and results, as well as the development of innovative testing procedures.
   • Case studies of PSHA from Europe and around the globe. 
   • Model building processes and related uncertainties, formal elicitation of expert opinion and its consequences for the levels of knowledge or belief, and comprehensive treatment of aleatory and epistemic uncertainties.
   • Contributions related to the ongoing update of the Harmonized European Seismic Hazard model and the emerging EPOS infrastructure on hazard and risk.
.

Share:
Co-organized as NH4.11
Convener: Danijel Schorlemmer | Co-conveners: Fabrice Cotton, Warner Marzocchi, Maximilian Werner, Stefan Wiemer
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room D1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X2
SM5.1

The use of fibre technologies for geophysical applications is expanding since few years. The design of highly sensitive sensors, such as rotational seismometers or strainmeters is one approach. In addition, initiatives such as SMART cables systems aim at piggy-backing environmental sensors onto submarine repeater units in order to improve sensor coverage across the oceans The use the fibre itself as a distribution of sensors for temperature or strain distributed sensing is an alternative. The vast majority of all telecommunications data (99%) transit through submarine and land-based fibre-optic cables. As the need for larger bandwidth and more rapid transmission has increased, so do the global networks of cables encircling the Earth. They now cover even remote regions of most continents and oceans. There have been significant advances in cable design and manufacturing technology, as well as cable deployment procedures. In very recent years there have been significant breakthroughs, applying techniques developed to interrogate the cables at very high precision over very large distances. For example, laser reflectometry using DAS (Distributed Acoustic Sensing) on both dedicated experimental and commercial fiber optic cables onshore and in submarine environment have successfully detected a variety of seismic sources (including ambient noise (microseism), local and teleseismic earthquakes, volcanic events, etc.). Other laser reflectometry techniques have long been used for monitoring of large-scale engineering infrastructures (dams, tunnels, bridges, pipelines, boreholes, etc.) and recently have been applied to natural hazard studies on land (monitoring of landslides or karst sinkholes) and have broader applications to the study of faults for instance. We welcome contributions that involve the application of fiber-optic cables or sensors in seismology, geodesy, geophysics, natural hazards, etc. from the laboratory to large-scale field tests.
We are delighted to have an Invited Speaker: Giuseppe Marra

Share:
Co-organized as NH4.13
Convener: Philippe Jousset | Co-conveners: Gilda Currenti, Marc-Andre Gutscher, Shane Murphy, Luciano Zuccarello
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room -2.91
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X2
SM6.1

Induced and triggered seismicity are common phenomena associated with sub-surface exploration and remote seismic events, respectively, and have been related to hydrocarbon extraction, hydraulic fracturing, geothermal exploitation, open-pit crater formation and underground mining operations, CO2 sequestration, and filling of new water reservoirs. Public awareness and concern of induced seismicity has become ubiquitous in locations where subsurface exploration and storage is carried out in close proximity to communities. Of particular concerns are massive fluid injections for hydro-fracturing to increase subsurface permeability as well as long-term injection in disposal wells. These concerns have led to regulations to passively monitor induced seismicity and consequently to a wealth of continuous seismic data. In contrast to the increase in data volume, our understanding of the relationship between exploitation techniques and induced seismicity as well as earthquake-earthquake interactions is still limited. New processing methods to analyze data and quantitative models to improve our understanding of the causal relationship between exploitation and seismicity have been developped. The current session is intended to provide a platform to present the latest research, field studies, theoretical and modelling aspects as well as methods for seismic hazard analysis related to induced and triggered seismicity. Topics to be presented include spatio-temporal variations of physical parameters in reservoirs and natural environments including stress and pressure changes, spatial-temporal patterns of seismicity, source mechanisms of micro- or larger-scale seismicity, mechanisms for induced events and seismic interaction, as well as, fracture-induced anisotropy. Contributions are sought from fundamental and applied research covering the fields of oil and gas operations including hydro-fracturing, geothermal exploitation particularly related to enhanced geothermal systems, open pit and underground mining, CO2 storage, and other fields such as volcano-seismology where induced and triggered seismic activity is observed.

Share:
Co-organized as ERE6.7/NH4.14
Convener: Philippe Jousset | Co-conveners: Roland Gritto, Luke Griffiths
Orals
| Tue, 09 Apr, 10:45–12:30
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
GD5.2

Many new high quality and high resolution geophysical and geological data had been acquired in the past years that need to be updated, re-analysed and re-interpreted in the light of our present knowledge in subductions processes. Moreover it is needed to better clarify the temporal and spatial evolution of those processes in order to much precise our geodynamic ideas of mountain building, subduction, transition of collision to subduction, or transition of subduction to collision.
Among other global places, the zone from Japan, Taiwan to the Philippines is a key area to study such subduction/collision transition due to the rapid convergence between Eurasian and Philippine Sea plates. There are geodynamic inversion of the east dipping Manila oceanic subduction, that evolves northward, first, into a Continental Subduction (also called Collision) onshore Taiwan, then secondly, east of Taiwan, into the north dipping Ryukyu arc/continent subduction. Due to the so rapid Plates shortening rate (10cm.y-1), those active Oceanic to Continental Subductions processes in Taiwan creates 1/8 of the annual seismicity in the World !
There are other places in the World active or not, that should also be taken into careful consideration in order to reveal and lead us to better understand new tectonic processes (e.g.: Alpes, Pyrénées, Cascades and so on).
To conclude in this EGU session, we aim to update the existing geodynamic state of the art of the oceanic to continental subductions processes after so numerous data that had been collected recently and all the works that had been done on this subject. Therefore this EGU Session should help us to much better understand the tectonics related to plate, plate collision and the transition between the subduction and collision.

Share:
Co-organized as GI2.11/NH4.15/SM2.6
Convener: Benoit Deffontaines | Co-conveners: Ho-Han Hsu, Shu-Kun Hsu
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X2
TS5.1

The study of active faults and deformation of the Earth's surface has made, and continues to make, significant contributions to our understanding of earthquakes and the assessment of seismic related hazard.
Active faulting may form and deform the Earth's surface so that records are documented in young sediments and in the landscape. Field studies of recent earthquake ruptures help not only constraining earthquake source parameters but also the identification of previously unknown active structures. The insights gleaned from recent earthquakes can be applied to study past earthquakes. Paleoseismology and related disciplines such as paleogeodesy and paleotsunami investigations still are the primary tools to establish earthquake records that are long enough to determine recurrence intervals and long-term deformation rates for active faults. Multidisciplinary data sets accumulated over the years have brought unprecedented constraints on the size and timing of past earthquakes, and allow deciphering shorter-term variations in fault slip rates or seismic activity rates, as well as the interaction of single faults within fault systems. Based on the this rich, but very heterogeneous knowledge of seismogenic faults, a variety of approaches have been developed to tranfer earthquake-fault geology into fault models suitable for probabilistic SHA. This session thus aims at linking field geologists, crustal deformation modellers, fault modellers, and seismic hazard practitioners.

In this session, we welcome contributions describing and critically discussing different approaches to study active faults. We are particularly interested in studies applying new and innovative methodological or multidisciplinary approaches. We hope to assemble a broad program bringing together studies dealing with on-land, lake or offshore environments, and applying a variety of methods such as traditional paleoseismic trenching, high-resolution coring, geophysical imaging, tectonic geomorphology, and remote sensing, as well as the application of earthquake geology in seismic hazard assessments. In addition, we encourage contributors describing how to translate fault data or catalogue data into fault models for SHA , and how to account for faults or catalogue issues.

Share:
Co-organized as GM4.5/NH4.16/SM3.10
Convener: Esther Hintersberger | Co-conveners: Romain Le Roux-Mallouf, Silke Mechernich, Oona Scotti
Orals
| Thu, 11 Apr, 08:30–10:15
 
Room K2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
TS5.3

Our first-order understanding of earthquake cycles is limited by our ability to detect and interpret natural phenomena or their relict signatures on faults. However, such observations allow us to define fundamental hypotheses that can be tested by way of experiments and models, ultimately yielding deeper insights into mechanics of faulting in nature. Inter-, co-, and post-seismic deformation can be documented geodetically, but the sparseness of the data and its large spatial and temporal variability do not sufficiently resolve their driving mechanisms. Laboratory experiments under controlled conditions can narrow down the possibilities, while numerical modelling helps extrapolating these results back to natural conditions. Thus, integrated approaches to bridge long-term tectonics and the earthquake cycle that combine observation, interpretation, experimentation, and finally, physical or numerical modelling, are key for our understanding of the deformation behaviour of complex fault systems.

This session seeks contributions toward an integrated perspective on the earthquake cycle that span a wide range of observations, methodologies, and modelling over a variety of spatial and temporal scales. Presentations can cover brittle and ductile deformation, from microstructures to mantle rheology and with applications to earthquake mechanics, geodynamics, geodesy, geohazards, and more. Specific questions include: How do long-term crustal and lithospheric deformation affect short-term seismicity and earthquake cycle behaviour? What is the long-term topographic signature of the earthquake? What are the relative contributions of rheology and geometry for seismic and aseismic slip? What are the roles of on- and off-fault deformation in shaping the landscape and partitioning seismic and aseismic energy dissipation? We welcome submissions by early-career scientists in particular.

— Invited speaker: Luc L Lavier, Jackson School of Geosciences | The University of Texas at Austin

Share:
Co-organized as GD2.11/NH4.17/SM1.23
Convener: Luca Dal Zilio | Co-conveners: Luca C Malatesta, Onno Oncken, Ylona van Dinther
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room K2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2
TS5.4

Earthquakes that occur within regions of slow lithospheric deformation (low-strain regions) are inherently difficult to study. The long interval between earthquakes, coupled with natural and anthropogenic modification, limit preservation of paleoearthquakes in the landscape. Low deformation rates push the limits of modern geodetic observation techniques. The short instrumental record challenges extrapolation of small earthquake recurrence based on modern seismological measurement to characterize the probability of larger, more damaging earthquakes. Characterizing the earthquake cycle in low-strain settings is further compounded by temporal clustering of earthquakes, punctuated by long periods of quiescence (e.g. non-steady recurrence intervals). However, earthquakes in slowly deforming regions can reach high magnitudes and pose significant risk to populations.

This session seeks to integrate paleoseismic, geomorphic, geodetic, geophysical, and seismologic datasets to provide a comprehensive understanding of the earthquake cycle in low-strain regions. This session will draw upon recent advances in high-resolution topography, geochronology, satellite geodesy techniques, subsurface imaging techniques, longer seismological records, high-density geophysical networks and unprecedented computational power to explore the driving mechanisms for earthquakes in low-strain settings. We welcome contributions that (1) present new observations that place constraints on earthquake occurrence in low-strain regions, (2) explore patterns of stable or temporally varying earthquake recurrence, and (3) provide insight into the mechanisms that control earthquakes in regions of slow deformation via observation and/or modeling.

Share:
Co-organized as NH4.18/SM2.10
Convener: Ryan Gold | Co-conveners: Pierre Arroucau, Sierd Cloetingh, Susana Custódio, Gordana Vlahovic
Orals
| Thu, 11 Apr, 16:15–18:00
 
Room K2
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X2

NH5 – Sea & Ocean Hazards

NH5.1 Media

Tsunamis can produce catastrophic damage on vulnerable coastlines, essentially following major earthquakes, landslides or atmospheric disturbances. After the disastrous tsunamis in 2004 and 2011, tsunami science has grown significantly, opening new fields of research for various domains, and also in regions where the tsunami hazard was previously underestimated.
Numerical modeling, complemented with laboratory experiments, are essential to quantify the tsunami hazard based. To this end, it is essential to rely on complete databases of past tsunami observations, including both historical events and results of paleotsunami investigations. Furthermore, a robust hazard analysis has to take into account uncertainties and probabilities with the more advanced approaches such as PTHA.
Because the vulnerability of populations, of infrastructures and of the built environment in coastal zones increases, integrated plans for tsunami risk prevention and mitigation should be encouraged in any exposed coastline, consistent with the procedures now in place in a growing number of Tsunami Warning System.
The NH5.1/OS2.22/SM3.11 Tsunami session welcomes contributions covering any of the aspects mentioned here, encompassing field data, regional hazard studies, observation databases, numerical modeling, risk studies, real time networks, operational tools and procedures towards a most efficient warning.
A focus on recent tsunami events all over the globe is encouraged (including Palu 28 September, Zakynthos 26 October, Tadine, New Caledonia, 5 December), as well as on the achievements of recent research projects.

Share:
Co-organized as OS2.22/SM3.11
Convener: Hélène Hébert | Co-conveners: Alberto Armigliato, Miquel Canals, Ira Didenkulova, Finn Løvholt
Orals
| Thu, 11 Apr, 08:30–12:30, 14:00–18:00
 
Room 1.61
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X3
NH5.2

The scopes of the session involve different aspects of large-amplitude wave phenomena in the Ocean (such as freak or rogue waves): surface and internal waves, and also waves trapped by currents and bathymetry. The session is focused on the understanding of the physical mechanisms which cause extreme events, and proposing appropriate mathematical models for their description and advanced methods for their analysis. An essential part of such studies are the results of verification of the new models and techniques versus laboratory and in-situ data. Special attention is paid to the description of the wave breaking process, and also large-amplitude wave interaction with coastal structures.

Share:
Co-organized as NP7.5/OS2.14
Convener: Alexey Slunyaev | Co-conveners: Amin Chabchoub, Henrik Kalisch, Efim Pelinovsky
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room L6
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X3
NH5.4 Media

Marine geological processes cover a range of different disciplinary fields and their understanding usually requires an interdisciplinary approach. The interaction of geological, physical oceanographic, chemical and biological mechanisms in marine geological processes ranging from sediment erosion and deposition, to hydrothermal and fluid flow systems, to early diagenesis and geomicrobiology, is of specific interest. Such processes may take place in shallow or deep, in tropical and glacial environments, and they may be natural or partly human-influenced. Climate-induced perturbations in marine geological processes have occurred in present and past, and potentially will also occur in the future. Several of these processes may also have a profound human impact, such as tsunamis generated by tectonic or mass-slumping events, coastal erosion in response to changed currents or river discharge, and sediment gravity flow in deep waters affecting human infrastructures. /We encourage comprehensive and interdisciplinary abstracts within the broad field of marine geology and with direct relevance to marine processes or deposits concerned with rocks, sediments, and geo-physical and geo-(bio)chemical processes that affect them.

Share:
Co-organized as BG3.20/CL4.39/OS4.30/SSP3.13
Convener: Gert J. De Lange | Co-conveners: Edward Anthony, Shu Gao, Michele Rebesco
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X3
NH5.5

Tsunamis and storm surges pose significant hazards to coastal communities around the world. Geological investigations, including both field studies and modelling approaches, significantly enhance our understanding of these events. Past extreme wave events may be reconstructed based on sedimentary and geomorphological evidence from low and high energy environments, from low and high latitude regions and from coastal and offshore areas. The development of novel approaches to identifying, characterising and dating evidence for these events supplements a range of established methods. Nevertheless, the differentiation between evidence for tsunamis and storms still remains a significant question for the community. Numerical and experimental modelling studies complement and enhance field observations and are crucial to improving deterministic and probabilistic approaches to hazard assessment. This session welcomes contributions on all aspects of paleo-tsunami and paleo-storm surge research, including studies that use established methods or recent interdisciplinary advances to reconstruct records of past events, or forecast the probability of future events.


This session is a contribution to IGCP Project 639: Sea-Level Change from Minutes to Millennia http://sealevelchange.org/

Share:
Co-organized as GM11.11/OS2.15/SSP3.15
Convener: Ed Garrett | Co-conveners: Dominik Brill, Max Engel, Simon Matthias May, Jessica Pilarczyk
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X3
NH5.6 | PICO

This session welcomes contributions presenting advances in, and approaches to, studying, modelling, monitoring, and forecasting of internal waves in stratified estuaries, lakes and the coastal oсean.

Internal solitary waves (ISWs) and large-amplitude internal soliton packets are a commonly observed event in oceans and lakes. In the oceans ISWs are mainly generated by the interaction of the barotropic tides with the bottom topography. Large amplitude solitary waves are energetic events that generate strong currents. They can also trap fluid with larvae and sediments in the cores of waves and transport it a considerable distance. ISWs can cause hazards to marine engineering and submarine navigation, and significantly impact on marine ecosystems and particle transport in the bottom layer of the ocean and stratified lakes. Contributions studying flows due to internal waves, their origin, propagation and influence on the surrounding environment are of great importance.
The scope of the session involves all aspects of ISWs generation, propagation, transformation and the interaction of internal waves with bottom topography and shelf zones, as well as an evaluation of the role of internal waves in sediment resuspension and transport. Breaking of internal-waves also drives turbulent mixing in the ocean interior that is important for climate ocean models. Discussion of parameterizations for internal-wave driven turbulent mixing in global ocean models is also invited.

Share:
Co-organized as NP7.6/OS2.13
Convener: Kateryna Terletska | Co-conveners: Marek Stastna, Tatiana Talipova, Zhenhua Xu
PICOs
| Tue, 09 Apr, 14:00–15:45
 
PICO spot 1
NH5.7

Natural hazards and climate change impacts in coastal areas
Coastal areas are vulnerable to ocean, atmospheric and land-based hazards. This vulnerability is likely to be exacerbated in future with, for example, sea level rise, increasing intensity of tropical cyclones, increased subsidence due to groundwater extraction. Drawing firm conclusions about current and future changes in this environment is challenging because uncertainties are often large. This calls for a better understanding of the underlying physical processes and systems. Furthermore, while global scale climate and detailed hydrodynamic modelling are reaching a mature development stage the robust assessment of impacts at regional and local scales remains in its infancy. Numerical models therefore play a crucial role in characterizing coastal hazards and assigning risks to them.

This session invites submissions focusing on assessments and case studies at global and regional scales of potential physical impacts of tsunamis, storm surge, sea level rise, waves, and currents on coasts. We also welcome submissions on near-shore ocean dynamics and also on the socio-economic impact of these hazards along the coast.

Share:
Co-organized as AS4.63/CL3.10/GM11.10/OS2.12
Convener: Renske de Winter | Co-conveners: Joern Behrens, Luke Jackson, Goneri Le Cozannet, Rosh Ranasinghe
Orals
| Fri, 12 Apr, 08:30–12:30, 14:00–15:45
 
Room 1.61
Posters
| Attendance Fri, 12 Apr, 16:15–18:00
 
Hall X3
OS2.4 Media

Oceanographic processes at coastal scales present a number of differences with respect to deep water oceanography, which result in higher prediction errors. In shallow water coastal domains the bottom topography, via the sea-bed boundary condition, exerts a strong control on the resulting wave and current fields. In addition to this, other factors need to be accounted for, such as the relevance of the tidal influence, stratification and mixing effects, land boundary condition (affecting the wind fields), the presence of distributed run off and point-wise river mouths. And yet it is in these coastal zones where the need for accuracy and reliability becomes crucial for planning socio-economic activities and for maintaining risk levels under present and future climate conditions.

A thorough characterisation of the physical processes taking place on the coastal region relies on the joint use of numerical modelling, in-situ observations and remote sensing, three approaches currently achieving rapid advances and which constitute the three basic pillars of this session. A coupled modelling approach to atmosphere, hydrodynamics and sediment transport, as well as the refinement of numerical strategies (nested meshes, finite-difference or finite-element discretization, variable grids, etc.), parameterizations and boundary conditions, can play a critical role in improving the quality of analyses and predictions. Marine observatories, providing the necessary information to drive and validate numerical models, are progressively aggregating into organised, trans-national infrastructures based on broadly accessible and interoperable data formats. The advent of new satellite capabilities (with increased resolution and enhanced technologies, like in the case of the Sentinel constellation) aiming at overcoming the typical limitations of remote sensing in coastal environments, allows starting a quantum leap in coastal oceanography. In fact, the joint use of these instruments can be particularly powerful for an increasing integration among the different aspects of coastal risk assessment, planning and response to climate change (as recommended by IPCC last reports).

This session proposes to discuss recent advances in these fields with emphasis on: integrated ocean-atmosphere-sediment modelling approaches and the physics of their coupling mechanisms; the hydrological, biogeochemical, geomorphological variability of coastal regions; the availability and use of coastal in-situ observations; and standards, procedures and data formats to make data ready for use in an integrated ocean processes monitoring system. We thus welcome presentations /posters also on: satellite/in-situ measurements, coastal assimilation, atmosphere-ocean-sediment model coupling and error/prediction limits as well as the contribution of coastal met-ocean science to operational oceanography. Applications to improve our knowledge on how these processes interact with coastal infrastructure or activities and applications of operational simulations combined with remote and in-situ data.

Share:
Co-organized as NH5.8
Convener: Agustín Sánchez-Arcilla | Co-conveners: Davide Bonaldo, Sandro Carniel, Pablo Cerralbo, Emil Stanev
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room N2
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X4
OS4.4

We invite presentations on ocean surface waves: their dynamics, modelling and applications. Wind-generated waves are a large topic of the physical oceanography in its own right, but it is also becoming clear that many large-scale geophysical processes are essentially coupled with the surface waves, and those include climate, weather, tropical cyclones, Marginal Ice Zone and other phenomena in the atmosphere and many issues of the upper-ocean mixing below the interface. This is a rapidly developing area of research and geophysical applications, and contributions on wave-coupled effects in the lower atmosphere and upper ocean are strongly encouraged.

Share:
Co-organized as AS2.6/NH5.9/NP7.4
Convener: Alexander Babanin | Co-conveners: Francisco J. Ocampo-Torres, Miguel Onorato, Fangli Qiao
Orals
| Mon, 08 Apr, 08:30–12:30
 
Room N2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X4
ERE3.1

Natural gas hydrates are solid inclusion compounds composed of water and gas. They form as methane hydrates under elevated pressure and lower temperature conditions in marine sediments along continental margins. They bind large volume of natural gas worldwide and may alter the strength of the upper sediment package along the margins based on their morphology, volume, and the stability conditions. Up to date, neither the quantification of gas hydrate resources nor the impact of gas hydrates on sediment stability or slope failures are well constrained. This is despite their importance for the usage of the continental slope and the exploration as well as exploitation of the unconventional hydrate reservoirs. Related studies are an essential component of current field studies, experimental research, modelling, and technical development.
This session aims at bringing together experts in these fields in order to exchange know-how as well as identify knowledge gaps. In this context we would like to invite contributions from studies in gas hydrate research as specified above.

Share:
Co-organized as NH5.10/OS2.7
Convener: Katja Heeschen | Co-conveners: Matthias Haeckel, Judith M. Schicks
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X1
SSP1.2

Scientific drilling through the International Ocean Discovery Program (IODP) and the International Continental Scientific Drilling Program (ICDP) continues to provide unique opportunities to investigate the workings of the interior of our planet, Earth’s cycles, natural hazards and the distribution of subsurface microbial life. The past and current scientific drilling programs have brought major advances in many multidisciplinary fields of socio-economic relevance, such as climate and ecosystem evolution, palaeoceanography, the deep biosphere, deep crustal and tectonic processes, geodynamics and geohazards. This session invites contributions that present and/or review recent scientific results from deep Earth sampling and monitoring through ocean and continental drilling projects. Furthermore, we encourage contributions that outline perspectives and visions for future drilling projects, in particular projects using a multi-platform approach.

Share:
Co-organized as CL1.32/EMRP3.11/GD2.9/GMPV1.7/NH5.12/TS1.4, co-sponsored by JpGU
Convener: Antony Morris | Co-conveners: Jorijntje Henderiks, Tanja Hörner, Thomas Wiersberg
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room 0.31
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X1
OS3.5

Oceanographic modelling and monitoring are both widely used to study the pathways and fate of marine pollutants such as hydrocarbons, plastic litter, suspended sediments, radionuclides, etc. In this session, advanced models, operational applications and techniques related to tracing pollutants on local, regional and global scales, as well as the coupling with met-oceanographic transport fields from operational oceanography products such as Copernicus Marine Monitoring Environment Service will be discussed.
Parcel trajectory numerical schemes, ensemble and multi-model methods, uncertainties estimation, risk algorithms, monitoring techniques and decision support systems are solicited topics. Integration of modelling and observing systems for both data assimilation and model validation are also very welcome.
Key questions of the session are identified as follows.
Which factors affect the dispersion of the oil, floating debris and other pollutants?
What happens to the contaminants on the ocean’s surface and in the water column?
How do oil, marine litter and other pollutants interact with water and sediments?
Impacts of pollutants on the marine ecosystems and resilience to pollution events are also important subjects for discussion: What are the oil’s, plastics’, and sediments’s behavior in the water column, on various beach sediments, rocks and seabed? 
E.g., what is the biodegradation rate of oil droplets remaining in the water column and what are the controlling factors? What is the rate of aggregation, biofouling, degradation and fragmentation of plastics?
What is the rate of beaching and sedimentation of marine pollutants and what are the ways of entering the marine food chains (including human consumption)?

Share:
Co-organized as NH5.13
Convener: Giovanni Coppini | Co-conveners: Angela Carpenter, Katerina Spanoudaki, Oleg Makarynskyy, George Zodiatis
Orals
| Tue, 09 Apr, 10:45–12:15
 
Room 1.85
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X4
GM11.5

Coastal zones worldwide face a great variety of environmental impacts associated to climate change, as well as increased anthropogenic pressures of coastal zone urbanization, rapid population growth and crucial shipping fairways. Strong interactions and feedbacks between hydrological, geomorphological, chemical and biological processes guide the morphological evolution of these sensitive coastal zones. Over the last decades coastal erosion has emerged as a widespread problem that causes shoreline retreat and irreversible land losses. Among the most affected and valuable natural systems of the coastal zone are estuaries and deltas. Inter- and supratidal habitats are threatened by expected changes under climate change, such as rising sea level at the mouth and larger variation in river discharge.
The human-induced solutions to cope with natural pressures using different types of hard engineering methods may often aggravate the problems, damaging natural landscape and coastal ecosystems in unexpected and unpredicted ways. Other negative impacts of human activities on littoral environments are chronic and punctual pollution of beaches, estuaries, river deltas, intertidal areas and coastal sediments with associated health risks for human beings. Chronic pollution is often observed in coastal areas close to factories, industries and human settlements - because of waste water discharges, punctual contamination is often linked to beach oiling. Therefore, assessing the impact of current and future climate change and anthropogenic pressure on the coastal zone is a complex task.
In this session we aim to bridge the gap between natural coastal zone dynamics and future response to human influence and climate change. We welcome subjects related to coastal geomorphology: evolution of coastal landforms, coastal morphodynamics, coastline alterations and various associated processes in the coastal zone, e.g. waves, tides and sediment drift, which shape coastal features and cause morphological changes.
The topics may include work on predictions of shoreline change, estuary and delta development and discussions on the effects of human activities and their continuing contribution to coastal changes. The session will also cover submissions on coastal vulnerability to the combined effects of natural and human-related hazards, any type of coastal and environmental sensitivity classifications, and risk assessments.

The Session is Sponsored by the Commission on Coastal Systems (CCS) of the International Geographical Union (IGU) (http://www.igu-ccs.org).

Share:
Co-organized as NH5.15/OS2.17
Convener: Margarita Stancheva | Co-conveners: Jasper Leuven, Andreas Baas, Giorgio Anfuso, Lisa Harrison, Hannes Tõnisson, Wout van Dijk, Guillaume Brunier
Orals
| Thu, 11 Apr, 14:00–15:45
 
Room G2
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X2
CL2.17.2 | PICO

The regional climate change assessment reports for the Baltic (BACC I and II) and North Sea regions (NOSCCA) have recently estimated the extent and impact of climate change on the environments of the North and Baltic Sea regions. A major outcome of these reports is the finding that climate change is one of multiple drivers, which have a continuing impact on terrestrial, aquatic and socio-economic (resp. human) environments. These drivers interact with regional climate change in ways, which are not completely understood.
This session invites contributions, which focus on the connections and interrelations between climate change and other drivers of environmental change, be it natural or human-induced, in different regional seas and coastal regions. Observation and modelling studies are welcome, which describe processes and interrelations with climate change in the atmosphere, in marine and freshwater ecosystems and biogeochemistry, coastal and terrestrial ecosystems as well as human systems. In particular, studies on socio-economic factors like aerosols, land cover, fisheries, agriculture and forestry, urban areas, coastal management, offshore energy, air quality and recreation, and their relation to climate change, are welcome.
The aim of this session is to provide an overview over the current state of knowledge of this complicated interplay of different factors, in different coastal regions all over the world.

Share:
Co-organized as BG3.24/HS11.23/NH5.17/OS2.21
Convener: Marcus Reckermann | Co-conveners: Ute Daewel, Helena Filipsson, Markus Meier, Markus Quante
PICOs
| Fri, 12 Apr, 16:15–18:00
 
PICO spot 5a

NH6 – Remote Sensing & Hazards

NH6.1 Media

Remote sensing and Earth Observations (EO) are used increasingly in the different phases of the risk management and in development cooperation, due to the challenges posed by contemporary issues such as climate change, population pressure and increasingly complex social interactions. EO-based applications have a number of advantages over traditional fieldwork expeditions including safety, the provision a synoptic view of the region of interest, the availability of data extending back several years and, in many cases, cost savings. Fortunately, the advent of new, more powerful sensors and more finely tuned detection algorithms provide the opportunity to image, assess and quantify natural hazards, their consequences, and vulnerable regions, more comprehensively than ever before.
For these reasons, the civil protections, the development agencies and space agencies have now inserted permanently into their programs applications of EO data to risk management. In particular, the Committee on Earth Observation Satellites (CEOS) has a permanent working group on Disasters that supports and promotes the use of EO data for Disaster Risk management (DRM). During the preparedness and prevention phase EO revealed, especially in data scarce environments, fundamental for hazard, vulnerability and risk mapping. EO data intervenes both in the emergency forecast and early emergency response, thanks to the potential of rapid mapping. EO data is also increasingly being used for mapping useful information for planning interventions in the recovery phase, giving to managers and emergency officials a wealth of time-continuous information for assessment and analysis of natural hazards, from small to large regions around the globe. In this framework, CEOS has been working from several years on disasters management related to natural hazards (e.g., volcanic, seismic, landslide and flooding ones), including pilots, demonstrators, recovery observatory concepts, Geohazard Supersites and Natural Laboratory (GSNL) initiatives and multi-hazard management projects.

The session is dedicated to multidisciplinary contributions especially focused on the demonstration of the benefit of the use of EO for the risk management, with an operational user-oriented perspective.
The research presented might focus on:
- Addressed value of EO data in risk/hazard forecasting models (observation of possible precursory events and evaluation of potential predictive capabilities)
- Innovative applications of EO data for rapid mapping.
- Innovative applications of EO data for hazard, vulnerability and risk mapping.
- Innovative applications of EO data for the post-disaster recovery phase.
- Innovative applications in support to disaster risk reduction strategies (eg. landscape planning).
- Development of tools and platforms for assessment and validation of hazard/risk models

The use of different types of remote sensing (e.g. thermal, visual, radar, laser, and/or the fusion of these) might be considered, with an evaluation of their respective pros and cons. Evaluation of current sensors, data capabilities and algorithms will be welcomed, as will suggestions for future sensor considerations, algorithm developments and opportunities for emergency management agency buy-in.
Early stage researchers are strongly encouraged to present their research. Moreover, contributions from international cooperation, such as CEOS and GEO initiatives, are welcome.

Share:
Co-organized as GI3.20/HS11.38
Convener: Paolo Tarolli | Co-conveners: Nicola Casagli, Kuo-Jen Chang, Peter Webley, Antonio Montuori, Simona Zoffoli, Michelle Parks
Orals
| Tue, 09 Apr, 08:30–10:15, 10:45–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X3
NH6.2

The availability of high spatial resolution Synthetic Aperture Radar (SAR) data, the advances in SAR processing techniques (e.g. interferometric, polarimetric, and tomographic processing), and the fusion of SAR with optical imagery as well as geophysical modelling allow ever increasing use of Imaging Geodesy using SAR/InSAR as a geodetic method of choice for earth system monitoring and investigating geohazard, geodynamic and engineering processes. In particular, the exploitation of data from new generation SAR missions such as Sentinel-1 that provide near real-time measurements of deformation and changes in land cover/use has improved significantly our capabilities to understand natural and anthropogenic hazards and then helped us mitigate their impacts. The development of high-resolution X-band SAR sensors aboard missions such as Italian COSMO-SkyMed (CSK) and German TerraSAR-X (TSX) has also opened new opportunities over the last decade for very high-resolution radar imaging from space with centimetre geometric accuracy for detailed analysis of a variety of processes in the areas of the biosphere, geosphere, cryosphere and hydrosphere. All scientists exploiting radar data from spaceborne, airborne and/or ground-based SAR sensors are cordially invited to contribute to this session. The main objective of the session is to present and discuss the progress, state-of-the-art and future perspectives in scientific exploitation of SAR data, mitigating atmospheric effects and error sources, cloud computing, machine learning and big data analysis, and interpretation methods of results obtained from SAR data for various types of disasters and engineering applications such as earthquakes, volcanoes, landslides and erosion, infrastructure instability and anthropogenic activities in urban areas. Contributions addressing scientific applications of SAR/InSAR data in biosphere, cryosphere, and hydrosphere are also welcome.

Share:
Co-organized as AS5.13/CR2.15/G2.7/GD10.3/HS11.45/NP4.11/SM1.14
Convener: Mahdi Motagh | Co-conveners: Ziyadin Cakir, Franz J Meyer, Zhenhong Li
Orals
| Mon, 08 Apr, 08:30–12:30, 14:00–15:45
 
Room M2
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X3
NH6.3 | PICO

World population growth combined with continuous climate changes increase the possibility of the human settles to be affected by landslides, earthquakes, floods and others natural and anthropogenic geohazards. As consequences, human settlements, structures and infrastructures can suffer important damage, casualties and injuries, and an enormous amount of resources are needed to restore direct and indirect costs. Furthermore, the social impact and the loss of cultural and historical heritage must be considered.
The International Disaster Database created by the Centre for Research on the Epidemiology of Disasters (CRED) states that more than 14,000 worldwide relevant natural disasters occurred during the last century, causing casualties or requiring of international assistance.
For this reason, the investigation, characterization and monitoring of geo-hazardous phenomena play a fundamental role in order to improve the knowledge for avoiding further recurrences with additional social, human and economic losses. The use of Earth Observation (EO) techniques for monitoring and characterizing geohazards is a well-known way to study these phenomena. The application of EO methods in this field has risen exponentially in the last decades yet nowadays is constantly evolving.
Remote sensing approaches allow to efficiently retrieve relevant information on geological processes at regional scale to investigate, characterize, monitor and model, as well as to prevent, geohazards. Satellites constellations, air and ground platforms equipped with different sensors, (e.g. optical camera, radar or LiDAR), coupled with advanced processing techniques and algorithms are one of the best ways to investigate geohazards. The possibility to combine different types of data allows to perform multi-sensor and multi-temporal analyses. In this way, the wide area coverage capabilities combined with high accuracy and precision play an important role in the widespread use for different applications.
Submissions are encouraged to cover a broad range of topics on the various applications of remote sensing techniques, which may include, but are not limited to, the following topics: i) innovative applications and methods on remote sensing, ii) significant cases of study, iii) applications and models concerning the use of satellite, iv) air and ground platform taking advantage of the use of different sensors for investigating a broad range of topic (e.g. landslide, subsidence, damage assessment, infrastructure stability).

Share:
Co-organized as GI3.9
Convener: Matteo Del Soldato | Co-conveners: Federico Raspini, Roberto Tomás Jover, Gerardo Herrera, Zhenhong Li
PICOs
| Wed, 10 Apr, 10:45–12:30
 
PICO spot 1
NH6.4 | PICO

The use of Remotely Piloted Aircraft Systems (RPAS) for geosciences applications has strongly increased in last years. Nowadays the massive diffusion of mini- and micro-RPAS is becoming a valuable alternative to the traditional monitoring and surveying applications, opening new interesting viewpoints. The advantages of the use of RPAS are particularly important in areas characterized by hazardous natural processes, where the acquisition of high resolution remotely sensed data could be a powerful instrument to quickly assess the damages and plan effective rescues without any risk for operators.
In general, the primary goal of these systems is the collection of different data (e.g., images, LiDAR point clouds, gas or radioactivity concentrations, etc.) and the delivery of various products (e.g., 3D models, hazard maps, high-resolution orthoimages, etc.).
The possible use of RPAS has promising perspectives not only for natural hazards, but also in the different field of geosciences, to support a high-resolution geological or geomorphological mapping, or to study the evolution of active processes. The high repeatability of RPAS flight and their limited costs allows the multi-temporal analysis of a studied area. However, methodologies, best practices, advantages and limitations of this kind of applications are yet unclear and/or poorly shared by the scientific community.
This session aims at exploring the open research issues and possible applications of RPAS in geosciences, collecting experiences, case studies, and results, as well as define methodologies and best practices for their practical use. The session will concern the contributions aiming at: i) describing the development of new methods for the acquisition and processing of RPAS dataset, ii) introducing the use of new sensors developed or adapted to RPAS, iii) reporting new data processing methods related to image or point cloud segmentation and classification and iv) presenting original case studies that can be considered an excellent example for the scientific community.

Share:
Co-organized as G6.5/GI3.22/GM2.14
Convener: Daniele Giordan | Co-conveners: Marc Adams, Yuichi S. Hayakawa, Francesco Nex, Fabio Remondino
PICOs
| Tue, 09 Apr, 10:45–12:30
 
PICO spot 1
NH6.7

Significant recent changes in climate are linked to an increase in the frequency and intensity of extreme weather and weather-related events such as heat and cold waves, floods, wind and snow storms, droughts, wildfires, tropical storms, dust storms, etc. This underscores the critical need for: (i) monitoring such events; (ii) evaluating the potential risks to the environment and to society, and; (iii) planning in terms of adaptation and/or mitigation of the potential impacts. The intensity and frequency of such extreme weather and climate events follow trends expected of a warming planet, and more importantly, such events will continue to occur with increased likelihood and severity.

Agricultural and forested areas cover large surfaces over many countries and are a very important resource that needs to be protected and managed correctly for both the environment and the local communities. Therefore, potential impacts deriving from a changing climate and from more frequent and intense extreme events can pose a serious threat to economic infrastructure and development in the coming decades, and also severely undermine food, fodder, water, and energy security for a growing global population.

Remote Sensing that includes the use of space, aerial and proximal sensors provide valuable tools to monitor, evaluate and understand ecosystem response and impacts at local, regional, and global scales based on spatio-temporal analysis of long-term imagery and related environmental data. Further, studies allowing the quantitative or qualitative evaluation of the risks, including integrating environmental and socio-economical components are particularly important for the stakeholders and decision-makers at all administrative levels. Thus, it is important to better understand links between climate change/extreme events in relation to associated risks for better planning and sustainable management of our resources in an effective and timely manner.

Relevant abstracts will be encouraged to submit a full paper to a related special issu in the journal NHESS (Natural Hazards and Earth System Sciences - https://www.nat-hazards-earth-syst-sci.net/special_issue980.html).

We especially encourage, but not limit, the participation of Early Career Scientists interested in the field of Natural Hazards.

The session is organized in cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as BG2.61/GI3.21/SSS13.17
Convener: Jonathan Rizzi | Co-conveners: Luigi Lombardo, Mahesh Rao, Wenwu Zhao
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X3
NH6.9

The session aims to collect original or review contributions on the use of data from Low-Earth-Orbiting (LEO) satellites making measurements in the thermosphere-ionosphere to investigate ionospheric anomalies related to space weather, geophysical and artificial sources. In fact, data from LEO satellites can provide a global view of near-Earth space variability and are complementary to ground-based observations, which have limited global coverage. The AMPERE project and integration of the Swarm data into ESA’s Space Weather program are current examples of this. The availability of thermosphere and ionosphere data from the DEMETER satellite and the new operative CSES mission demonstrates that also satellites that have not been specifically designed for space weather studies can provide important contributions to this field. On the other hand, there are evidences that earthquakes can generate electromagnetic anomalies into the near Earth space. A multi-instrumental approach, by using ground observations (magnetometers, magnetotelluric stations, GNSS receivers, etc.) and LEO satellites (DEMETER, Swarm, CSES, etc.) measurements can help in clarifying the missing scientific knowledge of the lithosphere-atmosphere-ionosphere coupling (LAIC) mechanisms before, during and after large earthquakes. We also solicit contributions on studies about other phenomena, such as tropospheric and anthropogenic electromagnetic emissions, that influence the near-Earth electromagnetic and plasma environment on all relevant topics including data processing, data-assimilation in models, space weather case studies, superimposed epoch analyses, etc.

Share:
Co-organized as AS4.57/EMRP2.10/ESSI1.9/GI3.14/NP9.3/SM5.4/ST4.10
Convener: Mirko Piersanti | Co-conveners: Livio Conti, Rune Floberghagen, Xuhui Shen, Michel Parrot
Orals
| Tue, 09 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
GI3.3

Remote sensing techniques and earth system modelling have been widely used in earth science and environmental science. In particular, the world is suffering significant environmental changes such as hydro-climatic extremes, sea level rise, melting glaciers and ice caps and forest fires. The earth observations and earth system models provide valuable insight into climate variability and environmental change. Meanwhile, the question on how to derive and present uncertainties in earth observations and model simulations has gained enormous attention among communities in the earth sciences.

However, quantification of uncertainties in satellite-based data products and model simulations is still a challenging task. Various approaches have been proposed within the community to tackle the validation problem for satellite-based data products and model simulations. These progress include theory advancement, mathematics, methodologies, techniques, communication of uncertainty and traceability.

The aim of this session is to summarize current state-of-the-art in uncertainty quantification and utilization for satellite-based earth observations and earth system models.

Share:
Co-organized as AS4.40/CL2.21/ESSI2.11/NH6.10
Convener: Jian Peng | Co-conveners: Zheng Duan, Shengzhi Huang, Guoyong Leng, Shiqiang Zhang
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X1
GI3.1

An unmanned aerial vehicle (UAV), commonly known as a drone, is an aircraft without a human pilot aboard. Originating mostly from military applications, their use is rapidly expanding to commercial, recreational, agricultural, and scientific applications. Unlike manned aircraft, UAVs were initially used for missions too "dull, dirty, or dangerous" for humans. Nowadays however, many modern scientific experiments have begun to use UAVs as a tool to collect different types of data. Their flexibility and relatively simple usability now allow scientist to accomplish tasks that previously required expensive equipment like piloted aircrafts, gas, or hot air balloons. Even the industry has begun to adapt and offer extensive options in UAV characteristics and capabilities. At this session, we would like people to share their experience in using UAVs for scientific research. We are interested to hear about specific scientific tasks accomplished or attempted, types of UAVs used, and instruments deployed.

Share:
Co-organized as AS5.5/CR2.13/EMRP2.20/NH6.11/OS4.27
Convener: Misha Krassovski | Co-conveners: Sebastien Biraud, Jens Klump
Orals
| Tue, 09 Apr, 14:00–15:45
 
Room M1
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X1
GI4.1

Ground Penetrating Radar (GPR) is a safe, advanced, non-destructive and non-invasive imaging technique that can be effectively used for inspecting the subsurface as well as natural and man-made structures. During GPR surveys, a source is used to send high-frequency electromagnetic waves into the ground or structure under test; at the boundaries where the electromagnetic properties of media change, the electromagnetic waves may undergo transmission, reflection, refraction and diffraction; the radar sensors measure the amplitudes and travel times of signals returning to the surface.

This session aims at bringing together scientists, engineers, industrial delegates and end-users working in all GPR areas, ranging from fundamental electromagnetics to the numerous fields of applications. With this session, we wish to provide a supportive framework for (1) the delivery of critical updates on the ongoing research activities, (2) fruitful discussions and development of new ideas, (3) community-building through the identification of skill sets and collaboration opportunities, (4) vital exposure of early-career scientists to the GPR research community.

We have identified a series of topics of interest for this session, listed below.

1. Ground Penetrating Radar instrumentation
- Innovative GPR equipment
- Design, realization and optimization of GPR antennas
- Equipment testing and calibration procedures

2. Ground Penetrating Radar methodology
- Survey planning and data acquisition strategies
- Methods and tools for data analysis and interpretation
- Data processing algorithms, electromagnetic modelling, imaging and inversion techniques
- Studying the relationship between GPR sensed quantities and physical properties of inspected subsurface/structures useful for application needs
- Advanced data visualization methods to clearly and efficiently communicate the significance of GPR data

3. Ground Penetrating Radar applications and case studies
- Earth sciences
- Civil engineering
- Environmental engineering
- Archaeology and cultural heritage
- Management of water resources
- Humanitarian mine clearance
- Vital signs detection of trapped people in natural and man-made disasters
- Planetary exploration

4. Contributions on the combined use of Ground Penetrating Radar and other geoscience instrumentation, in all applications fields

5. Communication and education initiatives and methods

Additional information
This session is organized by Members of TU1208 GPR Association (www.gpradar.eu/tu1208); the association is a follow-up initiative of COST (European Cooperation in Science and Technology) Action TU1208 “Civil engineering applications of Ground Penetrating Radar”.

Share:
Co-organized as EMRP2.18/HS11.5/NH6.12/PS5.4/SSS12.16/TS11.10
Convener: Aleksandar Ristic | Co-conveners: Alessandro Fedeli, Lara Pajewski, Mercedes Solla, Milan Vrtunski
Orals
| Wed, 10 Apr, 08:30–12:30
 
Room 0.96
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
GM2.2

Topographic data are fundamental to landscape characterization across the geosciences, for monitoring change and supporting process modelling. Over the last decade, the dominance of laser-based instruments for high resolution data collection has been challenged by advances in digital photogrammetry and computer vision, particularly in ‘structure from motion’ (SfM) algorithms, which offer a new paradigm to geoscientists.

High resolution topographic (HiRT) data are now obtained over spatial scales from millimetres to kilometres, and over durations of single events to lasting time series (e.g. from sub-second to decadal-duration time-lapse), allowing evaluation of dependencies between event magnitudes and frequencies. Such 4D-reconstruction capabilities enable new insight in diverse fields such as soil erosion, micro-topography reconstruction, volcanology, glaciology, landslide monitoring, and coastal and fluvial geomorphology. Furthermore, broad data integration from multiple sensors offers increasingly exciting opportunities.

This session will evaluate the advances in techniques to model topography and to study patterns of topographic change at multiple temporal and spatial scales. We invite contributions covering all aspects of HiRT reconstruction in the geosciences, and particularly those which transfer traditional expertise or demonstrate a significant advance enabled by novel datasets. We encourage contributions describing workflows that optimize data acquisition and post-processing to guarantee acceptable accuracies and to automate data application (e.g. geomorphic feature detection and tracking), and field-based experimental studies using novel multi-instrument and multi-scale methodologies. A major goal is to provide a cross-disciplinary exchange of experiences with modern technologies and data processing tools, to highlight their potentials, limitations and challenges in different environments.

Solicited speaker: Kuo-Jen Chang (National Taipei University of Technology) - UAS LiDAR data processing, quality assessment and geosciences prospects

Share:
Co-organized as CR2.11/G6.4/GI4.10/GMPV7.2/HS9.1.9/NH6.15/SSS12.12/TS11.7
Convener: Anette Eltner | Co-conveners: Mike James, Andreas Kaiser, Mark Smith, Jack Williams
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room G2
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X2
GI3.4

This session invites contributions on the latest developments and results in lidar remote sensing of the atmosphere, covering
• new lidar techniques as well as applications of lidar data for model verification and assimilation,
• ground-based, airborne, and space-borne lidar systems,
• unique research systems as well as networks of instruments,
• lidar observations of aerosols and clouds, thermodynamic parameters and wind, and trace-gases.
Atmospheric lidar technologies have shown significant progress in recent years. While, some years ago, there were only a few research systems, mostly quite complex and difficult to operate on a longer-term basis because a team of experts was continuously required for their operation, advancements in laser transmitter and receiver technologies have resulted in much more rugged systems nowadays, many of which are already operated routinely in networks and some even being automated and commercially available. Consequently, also more and more data sets with very high resolution in range and time are becoming available for atmospheric science, which makes it attractive to consider lidar data not only for case studies but also for extended model comparison statistics and data assimilation. Here, ceilometers provide not only information on the cloud bottom height but also profiles of aerosol and cloud backscatter signals. Scanning Doppler lidars extend the data to horizontal and vertical wind profiles. Raman lidars and high-spectral resolution lidars provide more details than ceilometers and measure particle extinction and backscatter coefficients at multiple wavelengths. Other Raman lidars measure water vapor mixing ratio and temperature profiles. Differential absorption lidars give profiles of absolute humidity or other trace gases (like ozone, NOx, SO2, CO2, methane etc.). Depolarization lidars provide information on the shapes of aerosol and cloud particles. In addition to instruments on the ground, lidars are operated from airborne platforms in different altitudes. Even the first space-borne missions are now in orbit while more are currently in preparation. All these aspects of lidar remote sensing in the atmosphere will be part of this session.

Share:
Co-organized as AS5.6/BG1.34/NH6.16/PS5.8
Convener: Andreas Behrendt | Co-conveners: Adolfo Comeron, Paolo Di Girolamo, Doina Nicolae, Andreas Fix
Orals
| Thu, 11 Apr, 08:30–12:30
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X1
GI4.5

The IR (MWIR 3-5micron and LWIR 7-12micron) sensing technologies have reached a significant level of maturity and has become a powerful method of Earth surface sensing.
Thermal sensing is currently used for characterize land surface Temperature (LST) and Land Surface Emissivity (LSE) and many other environmental proxy variables, which part of them can have a further relevance when assimilated into hydrological and climatological models.
The usefulness of IR sensing has been experimented in many environmental applications and also in the spatio-temporal domain for spatial patterns identification.
The session welcomes communications based on the actual of next future IR imagery from broadband to multi/hyperspectral applied to proximal or remote sensing (ECOSTRESS, ASTER, Sentinel3, Landsat etc. and airborne sensors) in the following specific objectives:
- IR instruments solution
- Instrument radiometric calibration procedures
- Algorithms retrieval for Temperature and Emissivity
- Soil properties characterization
- Evapo-Transpiration, water plants stress and drought
- IR targets identification
- Archaeological prospection
- Urban areas and infrastructure investigation
- Geophysical phenomena characterization
- IR synergy with optical imagery

LINKED TO THIS SESSION IS A REMOTE SENSING JOURNAL SPECIAL ISSUE "Proximal and Remote Sensing in the MWIR and LWIR Spectral Range" WITH DEADLINE DECEMBER 2019.

https://www.mdpi.com/journal/remotesensing/special_issues/EGU_TIR

SUBMISSIONS TO THIS SESSION AND TO THE RS JOURNAL SPECIAL ISSUE ARE WELCOME

Share:
Co-organized as AS5.9/HS6.9/NH6.17/SSS12.14
Convener: Stefano Pignatti | Co-conveners: Eyal Ben Dor, Maria Fabrizia Buongiorno, Angelo Palombo, Francesco Marchese, Nicola Genzano, Vasco Mantas, George Xian
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room 0.96
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X1
HS6.3

The monitoring of river water levels, river discharges, water bodies extent, storage in lakes and reservoirs, flooding and floodplain dynamics plays a key role in assessing water resources, understanding surface water dynamics, characterizing and mitigating water related risks and enabling integrated management of water resources and aquatic ecosystems.

While in situ measurement networks play a central role in the monitoring effort, remote sensing techniques are expected to contribute in an increasing way, as they can provide homogeneous and near real time measurements over large areas, from local to basin wide, regional and global.

In this context, remote sensing represents a value source of data and observations that may alleviate the decline in field surveys and gauging stations, especially in remote areas and developing countries. The implementation of remotely-sensed variables (such as digital elevation model, river width, flood extent, water level, land cover, etc.) in hydraulic modelling promises to considerably improve our process understanding and prediction and during the last decades, an increasing amount of research has been undertaken to better exploit the potential of current and future satellite observations. In particular, in recent years, the scientific community has shown how remotely sensed variables have the potential to play a key role in the calibration and validation of hydraulic models, as well as provide a breakthrough in real-time monitoring applications. However, except for a few pioneering studies, the potential of remotely sensed data to enhance water-related modelling and applications has not yet been fully enough explored, and the use of such data for operational decision-making is far from being consolidated. In this scenario, the forthcoming satellite missions dedicated to global water surfaces monitoring will enhance the quality, as well as the spatial and temporal coverage, of remotely sensed data, thus offering new frontiers and opportunities to enhance the understanding of flood dynamics and our capability to map their extents.

We encourage presentations related to flood monitoring, water level, storage and discharge etc through remotely sensed data including:

- Remote sensing data for flood hazard and risk mapping;
- Remote sensing techniques to monitor flood dynamics;
- The use of remotely sensed data for the calibration, or validation, of hydrological or hydraulic models;
- Data assimilation of remotely sensed data into hydrological and hydraulic models;
- Improvement of river discretization and monitoring by means of satellite based observations;
- River flows estimation by means of remote sensed observations;
- River and flood dynamics estimation from satellite (especially time lag, flow velocity, etc.)

Share:
Co-organized as NH6.19
Convener: Guy J.-P. Schumann | Co-conveners: Alessio Domeneghetti, Ben Jarihani, Angelica Tarpanelli, Jérôme Benveniste
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room C
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall A

NH7 – Wildfire Hazards

NH7.1

Wildfires have long been considered as a dynamic ecological factor and an effective agricultural and landscape management tool, but more recently they are increasingly seen as a hazard, which has motivated governments to develop spatio-temporal datasets and to produce risk and prognostic maps. A key factor in this respect is to study the spatial and temporal distribution of wildfires and understand its relationships with the surrounding socio-economic, environmental and climatological factors.
In recent years, innovative algorithms and methodologies have been developed for the analysis of spatially distributed natural hazards and ongoing phenomena such as wildfires. Considering the fast growing availability of high quality digital geo-referenced databases, it is important to develop and promote methods and new tools capable of easily take them into account, especially for large scale analysis. Convert the available datasets into meaningful and valuable information is the new challenge.
This session will bring together wildfire hazard scientists and researchers of various geo-disciplines, economists, managers and people responsible for territorial and urban defense and planning policies. The goal is to improve the understanding of the fire regime and discuss new technologies, methods and strategies to mitigate the disastrous effects of wildfires.
In this context, this session will examine empirical studies, new and innovative technologies, theories, models and strategies for wildfire research, especially to identify and characterize the patterns of spatial and temporal variability of wildfires. Therefore, investigation on the relationships between wildfires and predisposing anthropogenic, environmental and climatological factors are also considered.

Research topics include, but are not limited to:
• pre- and post-fire assessment: fire incidence mapping and variability, fire severity and damage (vegetation composition, decrease in forests, loss of biodiversity, soil degradation, alteration of landscape patterns and ecosystem functioning), including fire-planning and risk management
• development of methodology, based on expert knowledge or data driven, for the recognition, modelling and prediction of structured patterns in wildfires
• fire spread models, ranging from case studies to long-term climatological assessments
• long-term trend patterns: relation between wildfires and global changes (e.g., climate, land use/land cover, socioeconomic)
• fire impacts on the environment, in particular on the atmosphere, human health and natural/anthropogenic environment
• post-fire vegetation recovery and vegetation phenology

Both Oral and Poster presentations are very much encouraged, as we plan to have both lively oral and poster sessions.

Share:
Co-organized as SSS10.11
Convener: Mário Pereira | Co-conveners: Nikos Koutsias, Joana Parente, Marj Tonini
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room M2
Posters
| Attendance Mon, 08 Apr, 08:30–10:15
 
Hall X3
SSS10.10

Wildfire is a global phenomenon responsible in each summer for tremendous environmental, social and economic losses. In the last two years, many lives were lost during the fires occurred in Portugal, Greece and California. The conjunction of land abandonment, long drought periods, flammable monocultures, lack of forest management and urban development planning, resulted in an unprecedented destruction. This phenomenon have become a persistent threat worldwide, and this risk may increase in the future due to the combination of future fire-prone climate, together with the recent trends of afforestation, land abandonment and fire suppression.
A reflection focused in these variables is essential to understand the recurrence of these extreme fires, and the consequent fatalities that occurred in Portugal, California and Greece. These high-severity mega-fires have also an important impact on the environment as a result of the reduction of vegetation cover and high volatilization of nutrients. Despite the fact that several ecosystems such as the Mediterranean have a high resilience to fires, the high wildfire recurrence is reducing their capacity for recuperation, contributing importantly to land degradation.
The aim of this session is to join researchers that study fire effects on the ecosystems, from prevention to suppression, wildfire modelling, climate change impacts on fire and post-wildfire impacts, either by means of laboratory, field experiments, or numerical modelling. It is time for scientists to join their strengths to give accurate answers to prevent and mitigate the effects of wildfires.

Share:
Co-organized as GM7.11/HS11.68/NH7.6
Convener: Diana Vieira | Co-conveners: Paulo Pereira, Kajar Köster, Jantiene Baartman, Miriam Muñoz-Rojas
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room -2.32
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X1

NH8 – Biological, Environmental & Other Hazards

NH8.1

Some of the major coastal disasters in the past decade have clearly demonstrated how nature has a primary role in reducing the impact of extreme coastal flooding events generated by storms, which produce a high cost to society as well as a threat to valuable ecosystems. After Typhoon Haiyan in the Philippines in 2014, the Government financed USD22 million for the restoration of mangroves along the affected coastlines as evidence grew showing that where coastal vegetation was present, this attenuated the magnitude of flooding. Similarly, following Hurricane Katrina the US government invested USD500 million for the restoration of coastal national parks and salt marshes, accepting the proofs that marshes helped to reduce the damage, in association with dike and levees. Thus, it is a prerequisite to propose that the reconstruction of ecosystems should be done before an event strikes, with a philosophy of prevention rather than a remedy, with a philosophy of recovery. In Europe too, many member states have started to promote the recreation of coastal wetlands, considering setback strategies as well as the reconstruction and vegetation of coastal dunes, which act as the first line of defence to flooding. As it is stated in the recently released EU-Science for Disaster Risk Management 2017 Report, a number of European Commission-funded demonstration projects are now supporting ecosystem-based Disaster Risk Reduction, to prove the added value of such an approach compared with traditional engineering solutions.

This new approach demands: the development of new tools to model and design these reconstructed environments; merging physical concepts like bed erosion and sediment transport with the parameterization of biologically-induced phenomena, such as the role of emerged and submerged vegetation in attenuating wave and current energy; as well as the role of plants in stabilising/destabilising the morphology of coastal dune systems.

The session welcomes contributions covering modelling and monitoring aspects, including innovative approaches in coastal morphological models that account for the presence of the ecosystems, quantifying feed-back interactions between the physical and biological components. We welcome case-studies reporting recovery of the ecosystems and of the physical environment following major extremes such as tropical and extra-tropical storms. We also welcome contributions on case studies documenting new techniques for revegetation of submerged as well as subaerial environments.

Share:
Co-organized as GM5.13, co-sponsored by IGU-CCS
Convener: Paolo Ciavola | Co-conveners: Clara Armaroli, Jenny Brown, Pushpa Dissanayake
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
NH8.3

In the last decades, there has been increasing interest in natural occurrences of asbestos and asbestiform minerals as a source of possible environmental risk. A crucial theme of interest related to environmental pollution is the enhanced mobilization of asbestos or asbestiform minerals affecting soils and rocks, due to human activities (e.g., road construction, excavation, mining) in comparison with natural weathering processes. Moreover, when weathering affects basic and ultrabasic rocks, some naturally occurring potentially harmful elements (e.g., Cr, Ni, Co, V) become enriched in waters and soils. The session deals with the state of the art knowledge of processes that involve the rock story, from natural outcrops to the quarry’s products as building materials, with implications due to airborne mineral fibres. Also on proper characterization of stones, such as serpentinite, to avoid conflicts when opening or re-opening quarries and using these kind of rocks in construction and/or restoration. Moreover, we are particularly interested in contributions presenting novel and classical approaches for asbestos recycling and outcrop mapping, together with possible solutions for reducing or remove asbestos exposure.

Share:
Convener: Rosalda Punturo | Co-conveners: Andrea Bloise, Dolores Pereira
Posters
| Attendance Thu, 11 Apr, 16:15–18:00
 
Hall X3
ITS5.4/GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7

The session gathers geoscientific aspects such as dynamics, reactions, and environmental/health consequences of radioactive materials that are massively released accidentally (e.g., Fukushima and Chernobyl nuclear power plant accidents, wide fires, etc.) and by other human activities (e.g., nuclear tests).

The radioactive materials are known as polluting materials that are hazardous for human society, but are also ideal markers in understanding dynamics and chemical/biological/electrical reactions chains in the environment. Thus, the radioactive contamination problem is multi-disciplinary. In fact this topic involves regional and global transport and local reactions of radioactive materials through atmosphere, soil and water system, ocean, and organic and ecosystem, and its relation with human and non-human biota. The topic also involves hazard prediction and nowcast technology.

By combining >30 year (halftime of Cesium 137) monitoring data after the Chernobyl Accident in 1986, >5 year dense measurement data by the most advanced instrumentation after the Fukushima Accident in 2011, and other events, we can improve our knowledgebase on the environmental behavior of radioactive materials and its environmental/biological impact. This should lead to improved monitoring systems in the future including emergency response systems, acute sampling/measurement methodology, and remediation schemes for any future nuclear accidents.

The following specific topics have traditionally been discussed:
(a) Atmospheric Science (emissions, transport, deposition, pollution);
(b) Hydrology (transport in surface and ground water system, soil-water interactions);
(c) Oceanology (transport, bio-system interaction);
(d) Soil System (transport, chemical interaction, transfer to organic system);
(e) Forestry;
(f) Natural Hazards (warning systems, health risk assessments, geophysical variability);
(g) Measurement Techniques (instrumentation, multipoint data measurements);
(h) Ecosystems (migration/decay of radionuclides).

The session consists of updated observations, new theoretical developments including simulations, and improved methods or tools which could improve observation and prediction capabilities during eventual future nuclear emergencies. New evaluations of existing tools, past nuclear contamination events and other data sets also welcome.

Public information:
The release of radioactive materials by human activity (such as nuclear accidents) are both severe hazard problem as well as ideal markers in understanding geoscience at all level of the Earth because it cycles through atmosphere, soil, plant, water system, ocean, and lives. Therefore, we must gather knowledge from all geoscience field for comprehensive understanding.

Share:
Co-organized as GI2.7/AS4.43/BG1.39/ERE5.6/GMPV6.4/HS11.65/NH8.7/OS4.33/SSS8.7
Convener: Masatoshi Yamauchi | Co-conveners: Nikolaos Evangeliou, Yasunori Igarashi, Liudmila Kolmykova, Daisuke Tsumune
Orals
| Mon, 08 Apr, 14:00–15:45
 
Room N1
Posters
| Attendance Mon, 08 Apr, 16:15–18:00
 
Hall X1
GI3.8 | PICO

Radioactivity is ubiquitous in the natural environment as a result of i) cosmic radiation from space and secondary radiation from the interaction of cosmic rays with atoms in the atmosphere, ii) terrestrial sources from mineral grains in soils and rocks, particularly Potassium (K-40), Uranium (U-238) and Thorium (Th-232), and their decay products, and iii) Radon gas (Rn-222). The use of nuclear techniques enables the measurement of natural radioactivity in air, soils and water even at trace levels, making it a particularly appealing tool for characterizing time-varying environmental phenomena. This session welcomes contributions addressing the measurement and exploitation of environmental radioactivity in all areas of geosciences, including, but not limited to:

- volcanic monitoring and surveillance;
- identification of faults and tectonic structures;
- earthquakes;
- groundwater contamination;
- coastal and marine monitoring;
- atmospheric tracing, including of greenhouse gases and pollutants;
- air ionisation and atmospheric electricity;
- cosmic rays;
- public health including the EU BSS directive.

Contributions on novel methods and instrumentation for environmental radioactivity monitoring are particularly encouraged, including payloads for airborne measurements and small satellites.

Share:
Co-organized as NH8.8
Convener: Susana Barbosa | Co-conveners: Katalin Zsuzsanna Szabó, Quentin Crowley
PICOs
| Thu, 11 Apr, 08:30–10:15
 
PICO spot 4

NH9 – Natural Hazards & Society

NH9.1 Media

The purpose of this session is to: (1) showcase the current state-of-the-art in global and continental scale natural hazard risk science, assessment, and application; (2) foster broader exchange of knowledge, datasets, methods, models, and good practice between scientists and practitioners working on different natural hazards and across disciplines globally; and (3) collaboratively identify future research avenues.
Reducing natural hazard risk is high on the global political agenda. For example, it is at the heart of the Sendai Framework for Disaster Risk Reduction (and its predecessor the Hyogo Framework for Action) and the Warsaw International Mechanism for Loss and Damage Associated with Climate Change Impacts. In response, the last 5 years has seen an explosion in the number of scientific datasets, methods, and models for assessing risk at the global and continental scale. More and more, these datasets, methods and models are being applied together with stakeholders in the decision decision-making process.
We invite contributions related to all aspects of natural hazard risk assessment at the continental to global scale, including contributions focusing on single hazards, multiple hazards, or a combination or cascade of hazards. We also encourage contributions examining the use of scientific methods in practice, and the appropriate use of continental to global risk assessment data in efforts to reduce risks. Furthermore, we encourage contributions focusing on globally applicable methods, such as novel methods for using globally available datasets and models to force more local models or inform more local risk assessment.

Share:
Co-organized as GMPV6.2/HS11.47/SSS13.18
Convener: Hessel Winsemius | Co-conveners: Hannah Cloke, James Daniell, Melanie J. Duncan
Orals
| Tue, 09 Apr, 10:45–12:30, 14:00–18:00
 
Room L6
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
NH9.2 | PICO

Climate change, globalization, urbanization, and increased interconnectedness between
physical, human, and technological systems pose major challenges to disaster risk reduction
(DRR). Subsequently, economic losses caused by natural hazards are increasing in many regions of the world, which call for novel scientific approaches and new types of data collection to integrate the study of the natural processes triggering hazards, with the study of socioeconomic, political and technical factors that shape exposure and vulnerability.

This session aims to gather contributions on research, empirical studies, and observations that are useful for understanding and unravel the nexus between physical, human, and technological systems in DRR. We have identified a few examples of empirical puzzles where knowledge that is more fundamental is needed, thus contributions on the following topics are particularly welcome (but not limited to):

- Failure is a potential source of lesson-drawing, but history also offers success stories where disasters were avoided that deserve more rigorous assessment – What can we learn from comparative studies?

- Why do some societies that experience frequent natural hazards increase their resilience, while others become more vulnerable?

- Why do lowering hazard levels sometimes paradoxically lead to increased risks in some places?

- Why – despite major progress in understanding drivers of risk and developing enhanced methodologies and tools for assessing it – do we still see an increase in impacts associated with natural hazards?

Share:
Co-organized as GI1.10/GMPV6.6/HS11.40
Convener: Johanna Mård | Co-conveners: Korbinian Breinl, Steffi Burchardt, Giuliano Di Baldassarre, Michael Hagenlocher
PICOs
| Thu, 11 Apr, 08:30–10:15
 
PICO spot 1
NH9.3

What is known as Silk Road, was a trade route active since the Han Dynasty (207 BC-220 BC) which played an essential role in connecting East and West in terms of exchanges of goods, technology and civilization. In recent years a new interest arose about it especially after the launch of the big project named "Belt and Road Initiative". Nowadays it covers more than 70 countries and 4.4 billion people (63% of the world). However, due to the active underlying geological structure, rapid tectonic uplift, and climate change, the frequency of natural hazards (e.g. Floods, landslides, debris flow) dramatically increased in this area. In addition to that, haphazard urbanization and human activities amplified the disaster risk and associated loss. As concern this aspects the Sendai Framework and the 2030 Agenda for Sustainable Development proposed clear targets to reduce disaster loss and risk and make human settlements resilient and sustainable in local, national and regional levels.
To promote a safe, green, and resilient Silk Road, several main challenges need to be addressed:
1. Major gap in terms of common geological and meteorological background of natural hazards along the Belt and Road with few shared information and an unclear coordination mechanism.
2. Under climate change, natural hazards showed new characteristics in terms of formation, triggering criteria and mobility which is yet to be understood.
3. The demand of understanding disaster risk and risk assessment in this area.
4. Mechanisms to deal with the trans-boundary disasters.

The proposed session would like to focus on the wide area interested by the Silk Road and call for contributes submission on (but not limited to) the following topics:
• Disaster information collection and data sharing
• Understanding physical nature of disaster: Mechanisms, physical process
• Disaster risk assessment and reduction
• Typical trans-boundary disaster events and collaboration mechanism
• Affordable solutions for disaster management, such as early warning system, community-based risk management
• Haphazard urbanization, human activities and negative impact on disaster risk

Share:
Co-organized as GI2.6, co-sponsored by IRDR
Convener: Peng Cui | Co-conveners: Alessandro Pasuto, Yu Lei, Fang Lian, Javed Iqbal
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room M1
Posters
| Attendance Mon, 08 Apr, 10:45–12:30
 
Hall X3
NH9.4 Media

Assessing the costs of the overall economic impacts of natural hazards, costs of prevention and costs of responses to natural hazards supply crucial information for decision-making practices in the fields of disaster risk reduction, natural hazard and risk management and climate change adaptation planning. However, the lack of empirical impact data as well as the significant diversity in methods that are currently applied in costs assessments of different natural hazards and impacted sectors make it difficult to establish comprehensive, robust and reliable cost figures. This also hinders comparisons of associated costs across countries, hazards and impacted sectors. This session aims to review current methodological approaches for assessing individual cost types (such as direct damages to housing, indirect losses, as well as costs of risk reduction) and aims to show how these methods are used in the context of various natural hazards (e.g. floods, droughts, earthquakes). We welcome submissions in the areas of assessing these various types of damage induced by any kind of natural hazard. Also, we are interested in contributions that focus on the cost-effectiveness or efficiency of risk reduction to natural hazards and adaptation to increasing weather risks that are due to climate change. Presentations are welcome for instance on model development, validation, uncertainty analysis, risk assessment frameworks as well as presentations about the application of damage models in case studies. Abstracts are sought from those involved in both the theoretical and practical aspects related to these topics.
Excellent submissions which are deemed important contributions to the session will be classified as “solicited talks”.

Share:
Convener: Heidi Kreibich | Co-conveners: Veit Blauhut, Hans de Moel, Daniela Molinari, Thomas Thaler
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room L1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X3
NH9.5

This session aims at collecting examples of hazard and risk databases generated worldwide. Particularly welcome are contributions presenting databases generated at different spatial scales, such as local (ex. municipalities), regional (provinces/region/counties, catchment) or sovra-national databases that comprehend different countries). Those database can include a single hazard (ex. floods) or can be multi-hazards databases. Submitted abstracts can refer to any hazard, including both natural hazards (floods, earthquakes, landslides, storms, thunderstorms, lightning, wind etc.) and man made disasters (environment pollution/contamination, industrial incidents etc.). Contributions submitted to the session can be related to past events or also to future scenarios taking into account climate change. Finally, the session is open to databases in any format, including maps built in GIS based software.


The contributions which contact author is an Early Career Scientist (ECS) are particularly encouraged.


The session is organized in cooperation with NhET, Natural hazards Early career scientists Team

Share:
Convener: Emanuela Toto | Co-conveners: Duygu Tufekci-Enginar, Jonathan Rizzi
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X3
NH9.7

Several types of dangerous phenomena (either natural or man-made) pose a serious risk in many parts of the world, causing sometimes damages to human beings, their properties or the environment. Currently, in many less developed countries, characterized by heavy concentration of people in restricted areas, poorly regulated urbanization, and uncontrolled land use, natural or man-made hazards can result in severe effects, even if its original impact was not so critical. The catastrophic impact of these phenomena can be significantly reduced using different methods of mitigation or prevention. A fundamental task in hazard evaluation includes the prediction of the area influenced by the hazardous phenomenon, of its evolution in space and time, and the understanding of triggering mechanisms. As concerns specific risk, a further issue must be analysed in terms of vulnerability, i.e. the evaluation of potential effects on exposed elements.
In recent years, several types of monitoring approaches and 2D and 3D numerical models have been developed to predict the behaviour of dangerous phenomena, starting from their response to trigger factors. Nevertheless, such tools require a detailed knowledge of several environmental factors (e.g. geological, mechanical, and hydrological) and of boundary conditions, and therefore are generally applied only in relevant cases or to small study areas.
Aiming at decreasing the risk, innovative (possibly, low-cost and non-invasive) approaches may range from modelling to monitoring, to land use planning and knowledge dissemination, to realizing remedial works. Examples of innovative methods of monitoring, modelling, and simulation (and related methods of calibration and validation, as well as of sensitivity analyses), as well as of original combinations of structural and non-structural approaches for risk reduction are welcome. Comparative discussions on potential and limits of different approaches are also within the scope of this session.
A selection of the studies presented at the Conference will be considered for publication in a special issue, after a standard phase of review.

Share:
Convener: Giulio G.R. Iovine | Co-conveners: Abel Cruz, Marleen de Ruiter, Manuel Pastor, Veronica Pazzi, Víctor Manuel Hernandez Madrigal, Stefano Morelli, Stefano Utili
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room L1
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X3
NH9.9 | PICO Media

This session aims to share innovative approaches to developing multi-hazard risk assessments and their components, and to explore their applications to disaster risk reduction. Effective disaster risk reduction practices and the planning of resilient communities requires the evaluation of multiple hazards and their interactions. This approach is endorsed by the UN Sendai Framework for Disaster Risk Reduction. Multi-hazard risk and multi-hazard impact assessments look at interaction mechanisms among different natural hazards, and how spatial and temporal overlap of hazards influences the exposure and vulnerability of elements at risk. Moreover, the uncertainty associated with multi-hazard risk scenarios needs to be considered, particularly in the context of climate change and evolving vulnerabilities.

This session, therefore, aims to profile a diverse range of multi-hazard risk and impact approaches, including hazard interactions, multi-vulnerability studies, and multi-hazard exposure characterization. In covering the whole risk assessment chain, we propose that it will be easier to identify potential research gaps, synergies and opportunities for future collaborations.

We encourage abstracts which present innovative research, case study examples and commentary throughout the whole disaster risk cycle on (i) multi-hazard risk methodologies which address multi-vulnerability and multi-impact aspects; (ii) methodologies and tools for multi-hazard risk management and inclusive risk-informed decision making and planning; (iii) methodologies and tools for multi-hazard disaster scenario definition and management for (near) real-time applications; (iv) cross-sectoral approaches to multi-hazard risk, incorporating the physical, social, economic, and/or environmental dimensions; (v) uncertainty in multi-hazard risk and multi-hazard impact assessment; (vi) evaluation of multi-hazard risk under climate change and future changes; (vii) implementation of disaster risk reduction measures within a multi-hazard perspective.
The session is organized as a PICO session to facilitate interactive sharing of ideas among the participants, and to provide a space for discussion. If there is sufficient interest, we will seek to coordinate a special issue on multi-hazard risk in NHESS by gathering contributions from the session.

Share:
Convener: Stefano Terzi | Co-conveners: Anais Couasnon, Marleen de Ruiter, Anna Lo Jacomo, Faith Taylor
PICOs
| Thu, 11 Apr, 16:15–18:00
 
PICO spot 1
NH9.10

Global losses due to natural hazards have shown an increasing trend over the last decades, which is expected to continue due to growing exposure in disaster-prone areas and the effects of climate change. In response, recent years have seen greater worldwide commitment to reducing disaster risk. Working towards this end requires the implementation of increasingly effective disaster risk management (DRM) strategies. These must necessarily be supported by reliable estimates of risk and loss before, during, and after a disaster. In this context, innovation plays a key role.
This session aims to provide a forum to the scientific, public and private discourse on the challenges to innovate DRM. We welcome submissions on the development and application of groundbreaking technologies, big data, and innovative modeling and visualization approaches for disaster risk assessment and DRM decision-making. This includes the quantification and mapping of natural hazard risks and their components (i.e. hazard, exposure, and vulnerability), as well as the forecasting of hazard and impacts prior to a disaster event, or as it is unfolding (in real- or near real-time). We are particularly interested in contributions covering one or more of the following thematic areas in the context of disaster risk assessment and reduction: artificial intelligence and machine learning, big data, remote sensing, social media, volunteered geographic information (VGI), mobile applications, crowdsourcing, internet of things (IoT), and blockchain. We also welcome submissions exploring how these or other innovations can support real-world DRM strategies and translate into improved DRM decisions.

Share:
Co-organized as ESSI1.15/GI2.14
Convener: Rui Figueiredo | Co-conveners: Kai Schröter, Mario Lloyd Virgilio Martina, Carmine Galasso, Judith Cerdà Belmonte, Elise Monsieurs, Liesbet Jacobs
Orals
| Tue, 09 Apr, 08:30–10:15
 
Room M1
Posters
| Attendance Tue, 09 Apr, 16:15–18:00
 
Hall X3
NH9.11 ECS

In recent years an increasing number of research projects focused on natural hazards (NH) and climate change impacts, providing a variety of information to end user or to scientists working on related topics.

The session aims at promoting new and innovative studies, experiences and models to improve risk management and communication about natural hazards to different end users.

End users such as decision and policy makers or the general public, need information to be easy and quickly interpretable, properly contextualized, and therefore specifically tailored to their needs. On the other hand, scientists coming from different disciplines related to natural hazards and climate change (e.g., economists, sociologists), need more complete dataset to be integrated in their analysis. By facilitating data access and evaluation, as well as promoting open access to create a level playing field for non-funded scientists, data can be more readily used for scientific discovery and societal benefits. However, the new scientific advancements are not only represented by big/comprehensive dataset, geo-information and earth-observation architectures and services or new IT communication technologies (location-based tools, games, virtual and augmented reality technologies, and so on), but also by methods in order to communicate risk uncertainty as well as associated spatio-temporal dynamic and involve stakeholders in risk management processes.

However, data and approaches are often fragmented across literature and among geospatial/natural hazard communities, with an evident lack of coherence. Furthermore, there is not a unique approach of communicating information to the different audiences. Rather, several interdisciplinary techniques and efforts can be applied in order to simplify access, evaluation, and exploration to data.

This session encourages critical reflection on natural risk mitigation and communication practices and provides an opportunity for geoscience communicators to share best methods and tools in this field. Contributions – especially from Early Career Scientists – are solicited that address these issues, and which have a clear objective and research methodology. Case studies, and other experiences are also welcome as long as they are rigorously presented and evaluated.

New and innovative abstract contributions are particularly welcomed and their authors will be invited to submit the full paper on a special issue on an related-topics Journal.

In cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as ESSI1.8/GI1.11/GMPV6.3/HS11.44/SM3.7/SSS13.19
Convener: Raffaele Albano | Co-conveners: Valeria Cigala, Jonathan Rizzi
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room L1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X3
NH9.12

Critical infrastructures and other technological systems such as transportation systems, telecommunications networks, pipelines, and reservoirs are at risk of natural hazards (e.g., landslides, earthquakes, floods) in many urban and rural areas worldwide. A key to safe and affordable operations of these types of infrastructure is an in-depth knowledge of their exposure and vulnerability to natural hazards and the impact of damage experienced either locally or across the network. Fundamental understanding of hazard and risk involves (i) systematic identification and mapping of potential infrastructure exposure, (ii) integrated assessment of impact as result of damage, repair and/or mitigation, (iii) indirect losses from infrastructure disruption, (iv) consideration of interactions between hazards and/or cascades of hazards. This session welcomes contributions with a focus on natural hazards risk assessment for critical infrastructures and technological systems, and compilation of databases to record impact and elements at risk. We also encourage abstracts addressing the development and application of tools for cost modeling. The session is dedicated to contributions with national, regional, and local perspective and intends to bring together experts from science and practice as well as young scientists. We encourage poster submissions, and foresee a lively poster session couple with oral talks, and will, if appropriate, have an associated splinter discussion session.

Share:
Convener: Elena Petrova | Co-conveners: Maria Bostenaru Dan, Elisabeth Krausmann
Orals
| Fri, 12 Apr, 10:45–12:30
 
Room L1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X3
NH9.15

Despite increasing losses and negative impacts caused by natural hazards worldwide, research and resources are targeted mainly at the study and management of the natural processes themselves, rather than on their interaction with the natural and built environment as well as the affected communities. The understanding of this interaction and its qualitative or quantitative assessment is the key to vulnerability reduction and increasing of resilience to natural hazards.
In this session, we welcome studies unveiling the dynamic root causes of vulnerability and aiming at the analysis and reduction of all its dimensions (physical, economic, social, environmental, cultural and institutional). Moreover, contributions focusing on the resilience of affected communities and the built environment to natural hazards in all phases of the disaster cycle and particularly the reconstruction phase (“build back better”) are of special interest. Additionally, we invite submissions concentrating on knowledge management, innovative data collection techniques, mobile applications and citizen science related to the vulnerability and resilience of the elements at risk.

Share:
Co-organized as HS11.43
Convener: Maria Papathoma-Koehle | Co-conveners: Sven Fuchs, Margreth Keiler
Posters
| Attendance Tue, 09 Apr, 08:30–10:15
 
Hall X3
ITS3.6/NH9.17 Media

Over the past decades, many initiatives have been produced to archive the losses and datasets associated with natural perils events (EM-DAT, MunichRe NATCATservice, SwissRe Sigma, CATDAT, Dartmouth Flood Observatory etc.). On a European scale, much research has also been undertaken on a Europe-wide, country and subcountry level either using Desinventar or through other academic and insurer data archiving. However, these loss databases provide varying levels of parameters, data completeness, quality checks, spatial integration, and spatiotemporal limits. In addition, the types of data collection and definitions of loss often differ greatly between databases.

With over 3000 Open Data Initiatives around Europe (www.europeandataportal.eu/) and the World, the amount of data freely available is increasing, but censoring and data checks are required in order to ensure that the quality is reasonable. This similarly goes for online media archives and loss reporting. Even though some initial attempts have been made to connect different databases and stimulate consistency and open access (e.g. IRDR-DATA), this is a topic that needs to be explored further.

This session aims to advance efforts on loss data collection and provide a future inventory of socioeconomic loss databases for loss and risk analysis as well as to create a community linking academia, government and insurance.

Abstracts are welcomed in the following fields:-
- Socioeconomic loss databases for natural perils
- Infrastructure and sectoral loss archiving
- Online media initiatives for collecting loss data (e.g. twitter)
- Post-disaster loss analysis
- Online analysis of loss data or loss reporting
- Parametric risk transfer products
- GIS integration of past natural hazards event data
- Open data efforts for loss modelling
- Insurance loss data and loss archives
- Government post-disaster loss analysis and loss databases
- Other relevant loss-related research

Share:
Co-organized as NH9.17
Convener: James Daniell | Co-conveners: Jeroen Aerts, John K. Hillier, Gero Michel, Harriette Stone
Orals
| Thu, 11 Apr, 10:45–12:30
 
Room N1
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X3
ITS3.3/NH9.18/EOS4.4/HS11.20 | PICO Media

Natural hazards and the associated risk are in some cases a major hindrance to economic and social growth in economically developing countries. This is particularly evident for urban areas, since rapid and uncontrolled urbanization in hazard-prone regions may result in a significant increase in risk due to insufficient spatial planning, which sometimes does not correctly consider (if at all) the impact of natural hazards, and to inadequate building practices. This session will profile the challenges faced in the developing world when doing assessments of natural hazard and risk and designing mitigation strategies. Examples of these challenges include (i) a frequent lack of data, along with difficulties in collecting it, (ii) rapid and often unplanned urban development, with building practices often neglecting the potential hazards, (iii) less regulated nature-human interactions, (iv) limited resources and capacity to undertake the most appropriate prevention and mitigation actions and to actually respond to disastrous and extreme events, (v) climate change, and (vi) difficulties in communication between science, policy and decision makers, and the general public.
Submissions to this PICO session covering all relevant topics are welcome, including but not limited to: database and archive construction; modeling, monitoring and tools for natural hazard and risk assessment; conceptual understanding of multi-hazards and nature-technology interactions; response and mitigation strategies; and communications, policy and decision-making. We particularly welcome abstracts focusing on urban areas, as well as the participation of stakeholders to share their innovative theoretical and practical ideas and success stories of how risk can be understood and addressed across economically developing countries.

Share:
Co-organized as NH9.18/EOS4.4/HS11.20
Convener: Faith Taylor | Co-conveners: Olivier Dewitte, Joel Gill, Andreas Günther, Bruce D. Malamud
PICOs
| Fri, 12 Apr, 14:00–15:45
 
PICO spot 4
ITS6.2/NH9.20/HS11.13

2007 was a crucial year when the threshold of 50% of the population living in urban areas has been achieved and Ten years later, many hazards and often combination of hazards heat the urban environment everywhere in the world. This increase rate corresponds to a new city of 1 million people every week during the next 40 years. This exponential curve is enough to imagine that cities become more vulnerable: issues we will have to face dealing with risk management become more complex. Moreover, this quick urbanization comes with climate change uncertainties. Climate change, coupled with people and asset concentration in cities, is the worst combination to set up a sustainable natural hazard management plan. As an example, floods are considered the major natural hazard in the EU in terms of risk to people and assets. Currently, more than 40 bn € per year are spent on flood mitigation and recovery in the EU. More than 75 % of the damage caused by floods is occurring in urban areas. Climate change and concentration of population and assets in urban areas are main trends likely to affect these numbers in the near future. Global warming is expected to lead to more severe storm and rainfall events as well as to increasing river discharges and sea level rise. This means that flood risk is likely to increase significantly. At least, urban systems contain assets of high value and complex and interdependent infrastructure networks (i.e. power supplies, communications, water, transport etc.). The infrastructure networks are critical for the continuity of economic activities as well as for the people’s basic living needs. Their availability is also required for fast and effective recovery after disasters (floods, hurricanes, earthquakes, landslides...). The severity of damage therefore largely depends on the degree that both high value assets and critical urban infrastructure are affected, either directly or indirectly.
In this context, we obtain an urban society:
• more and more menaced by a lot of hazards
• more and more vulnerable due to increasing issues and complex urban system relations;
• less and less resilient.

This session aims at discussing how researchers, practitioners and professionals are integrating the resilient concept to set up new risk management approaches and to design more resilient and flexible cities to face all types of natural hazards. Indeed, a lot of projects in the EU are now trying to use the concept of resilience to mitigate different types of risks in urban areas. This session represents a great opportunity to exchange on resilient cities and to build up a resilience framework. We are attending presentations combining different disciplines, bringing conceptual elements on resilience but also tangible applications. All methods, frameworks, tools (GIS) designed to reduce risks in cities and integrating the resilience concept are welcome in this session.

From the Urban Resilience Studies part, we are expecting communications questioning the traditional risk management approaches, based on case studies and leading to new approaches based on the concept of resilience.
From the Risk Mapping, communications have to demonstrate how risks are characterized, assessed and mapped at several scales allowing to develop operational spatial decision support systems.

Share:
Co-organized as NH9.20/HS11.13
Convener: Bruno Barroca | Co-conveners: Damien Serre, Charlotte Heinzlef, Mattia Leone, Xun Sun, Elisabeth Krueger, Vincent Becue
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room N1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X3
GI4.3

The new scenario related to the global urbanization process and its impact on environmental sustainability and resilience to natural disasters, especially the ones related to the Climate Change, strongly call holistic multidisciplinary and multi-sectorial approaches for the management of urban areas and Cultural heritages.
These approach aim at providing solutions based on the integration of technologies, methodologies and best practices (remote and local monitoring, simulating and forecasting, characterizing, maintaining, restoring, etc.), with the purpose to increase the resilience of the assets, also thanks to the exploitation of dedicated ICT architectures and innovative eco-solutions and also by accounting the social and economic value of the investigated areas, especially in CH frame.
In this context, attention is also focused on the high-resolution geophysical imaging is assuming a great relevance to manage the underground and to adopt new strategies for the mitigation of geological risks.
This session represents a good forum to present, technologies best practices and share different experiences in the field of the urban areas and CH management and protection, against the multi-risk scenarios and for the different situations at European and worldwide level. Finally, great attention will be devoted to the success cases, with a specific focus on recent international projects on smart cities and Cultural heritage in Europe and other countries.

Share:
Co-organized as CL5.18/ESSI1.4/NH9.21
Convener: Giuseppina Padeletti | Co-conveners: Ilaria Catapano, Vincenzo Lapenna, Jürgen Moßgraber, Filippos Vallianatos
Orals
| Wed, 10 Apr, 14:00–15:45
 
Room 0.96
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X1
ITS3.1/SSS1.4/EOS3.2/BG1.21/ESSI3.8/HS11.32/NH9.22 Media

Citizen science (the involvement of the public in scientific processes) is gaining momentum in one discipline after another, thereby more and more data on biodiversity, earthquakes, weather, climate, health issues among others are being collected at different scales that can extend the frontiers of knowledge. Successful citizen observatories can potentially be scaled up in order to contribute to larger environmental and policy strategies and actions (such as the European Earth Observation monitoring systems) and to be integrated in GEOSS and Copernicus. Making credible contributions to science can empower citizens to actively participate in environmental decision making, can raise awareness about environmental issues and can help bridge the science-society gap. Often, citizen science is seen in the context of Open Science, which is a broad movement embracing Open Data, Open Access, Open Educational Resources, Open Source, Open Methodology, and Open Peer Review to transparently publish and share scientific research - thus leveraging Citizen Science and Reproducible Research.

Both, open science in general and citizen science in particular, pose great challenges for researchers, and to support the goals of the various openness initiatives, this session looks at what is possible nowadays and what is ready for application in geosciences. Success stories, failures, best practices and solutions will be presented, in addition to various related networks. We aim to show how researchers, citizens, funding agencies, governments and other stakeholders can benefit from citizen science and open science, acknowledging the drawbacks and highlighting the opportunities available for geoscientists.

In this session, we are looking for successful approaches of working with citizen science and open science to bridge the gap between a multitude of stakeholders in research, policy, economy, practice and society at large by finding emerging environmental issues and empowering citizens. This session shall be an open space to exchange experiences and to present either successful examples or failed efforts. Learning from others and understanding what to adopt and what to change help the participants in their own undertakings and new initiatives, so that they become future success stories.

We want to ask and find answers to the following questions:
Which approaches can be used in Earth, Planetary and Space Sciences?
What are the biggest challenges and how to overcome them?
What kind of citizen scientist involvement and open science strategies exist?
How to ensure transparency in project results and analyses?
How to evaluate successful bridging of the science-society-gap?

Share:
Co-organized as SSS1.4/EOS3.2/BG1.21/ESSI3.8/HS11.32/NH9.22
Convener: Taru Sandén | Co-conveners: Daniel Dörler, Steffen Fritz, Florian Heigl, Amanda Whitehurst, Martin Hammitzsch
Orals
| Fri, 12 Apr, 08:30–12:30
 
Room N1
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X1
ITS6.1/NP8.5/AS4.50/CL2.26/HS11.31/NH9.23

As discussed by EGU2017 DB2 and EGU 2018 TM16, there had been an impressive series of international agreements and development of large networks of cites that call for qualitative improvements of urban systems and their interactions with their environment. The main goal of this ITS is to mobilise geoscientists, highlight their present contributions and encourage holistic approaches beyond the traditional silos of urban meteorology/hydrology/climatology/ecology/resilience, as well as some other terms.

Public information:
See also Town Hall TM 19 "Cities and Interdisciplinary Geosciences"
to be held on Thursday 11 April in room 1.85 from 19:00 to 20:00.
https://meetingorganizer.copernicus.org/EGU2019/session/33913

Share:
Co-organized as NP8.5/AS4.50/CL2.26/HS11.31/NH9.23
Convener: Daniel Schertzer | Co-conveners: Klaus Fraedrich, Stefano Tinti
Orals
| Wed, 10 Apr, 08:30–10:15
 
Room N1
Posters
| Attendance Wed, 10 Apr, 10:45–12:30
 
Hall X4
EOS6.3

In this session, led by the Mountain Research Initiative (MRI), we invite contributions to explore diverse experiences with inter- and transdisciplinary research (ID-TD research), education and practice, as it is specifically applied in the mountain context. Taking mountains as complex social-ecological systems, they offer a concrete and spatially-defined context in which to explore how global change phenomena such as elevation dependent warming and climate change, land-use change, tourism, natural hazards, energy and social demographic change manifest and interlink simultaneously in these unique spaces. Addressing societal concerns and solutions with regards to associated impacts and implications for sustainable mountain development in response to these processes of change, requires an inter- and transdisciplinary approach to research and practice. We seek to convey and explore the mountain-specific challenges for this mode of research, education and training for IT-TD in mountains, as well as innovations to deal with these challenges. We also hope to foster a network and community of practice within the MRI, that offers a mountains perspective to IT-TD research and contribute to its theory, methodology and practice.

www.mountainresearchinitiative.org

Share:
Co-organized as NH9.26
Convener: Carolina Adler | Co-convener: Aino Kulonen
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X4
GM6.3 Media

Documenting the diversity of human responses and adaptations to climate, landscapes, ecosystems, natural disasters and the changing natural resources availability in different regions of our planet, cross-disciplinary studies in Geoarchaeology provide valuable opportunities to learn from the past. Furthermore, human activity became a major player of global climatic and environmental change in the course of the late Quaternary, during the Anthropocene. Consequently, we must better understand the archaeological records and landscapes in context of human culture and the hydroclimate-environment nexus at different spatial and temporal scales. This session seeks related interdisciplinary papers and specific geoarchaeological case-studies that deploy various approaches and tools to address the reconstruction of former human-environmental interactions from the Palaeolithic period through the modern. Topics related to records of the Anthropocene from Earth and archaeological science perspectives are welcome. Furthermore, contributions may include (but are not limited to) insights about how people have coped with environmental disasters or abrupt changes in the past; defining sustainability thresholds for farming or resource exploitation; distinguishing the baseline natural and human contributions to environmental changes. Ultimately, we would like to understand how strategies of human resilience and innovation can inform our modern strategies for addressing the challenges of the emerging Anthropocene, a time frame dominated by human modulation of surface geomorphological processes and hydroclimate.

Share:
Co-organized as CL1.16/NH9.27
Convener: Andrea Zerboni | Co-conveners: André Kirchner, Kathleen Nicoll, Julia Meister, Hans von Suchodoletz
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room G2
Posters
| Attendance Fri, 12 Apr, 14:00–15:45
 
Hall X2
ITS5.6/GM6.2/BG1.46/CL2.28/ERE8.8/GI1.9/NH9.28/SSS13.27

The originality of the session is to emphasize on the central position of human activities in environmental research (both terrestrial and atmospheric), as a driving factor and/or a response, by combining different spatio-temporal scales.
Continental environments (under various climatic conditions) experience profound societal and physical changes, which prompt scientists to investigate the complex interactions between environmental functioning and human activities.
The complexity originates from the multiplicity of factors involved and resulting spatial and temporal variabilities, of their multiple origins in time (historical integration) and/or legacy.
As a consequence, causal links in this societal-environmental relationship are difficult to establish but, it is fundamental to understand these causal links to adapt, conserve, protect, preserve and restore the functioning of the environment as well as human activities. From this point of view, the geographical approach highlights the relationships (or their absence) through the expression of the spatial and temporal trajectories of the processes studied by clarifying the observation of signals.
The ensuing issues on the relevance of indicators used in different supports of nowadays research (imagery, archives, models ...) are raised as a methodological open up.
In this context, oral and poster presentations dealing with any studies related to the following issue(s) are welcome:
- human forcing on the environments and environmental resilience
- response of socio-systems to environmental changes
- scenarios, prospective and retrospective models of the evolution of environments and human activities
- management modes (adaptive management) of anthropised continental environments, reciprocity, mutual benefits (ecosystem services), positive feedback

The session may include the following methodological aspects:
- in situ metrology,
- statistical and numerical modeling,
- spatio-temporal analysis,
- remote Sensing,
- surveys,
- landscape analysis,
- paleoenvironmental approach,
at various scales:
- spatial scales, from the station and site through watershed,
- time scales from the event to the Holocene.

Share:
Co-organized as GM6.2/BG1.46/CL2.28/ERE8.8/GI1.9/NH9.28/SSS13.27
Convener: Armelle Decaulne | Co-conveners: Anne-Julia Rollet, Olivier Planchon, Thorsteinn Saemundsson, Etienne Cossart
Orals
| Wed, 10 Apr, 10:45–12:30
 
Room N1
Posters
| Attendance Wed, 10 Apr, 16:15–18:00
 
Hall X2

NH10 – Short Courses in Natural Hazards

SC1.16

The tenth short-course in this highly successful sequence of Fourier-focused short-courses will consider two important basic techniques for analysis of geoscience (and other) time-series with regard to periodic features. First, the Fast Fourier Transform (FFT) for equal-interval time-series. Second, the related Lomb-Scargle periodogram for unequal-interval time-series.

The FFT is a key underpinning technique of time-series analysis for the identification of periodic features. The session will overview the key properties of the FFT and the inherent constraints of discrete time-series and sampled data to provide a framework for understanding other, more advanced data-analytical techniques. The Lomb-Scargle periodogram is a least-squares spectral analysis (LSSA) technique and can be considered as a replacement for the FFT for unequal-interval time-series. The session will make the links between the Lomb-Scargle periodogram and the FFT and their common roots in the covariance of a time-series and sinusoids of given frequencies. Both techniques yield estimates of the power spectrum of the data in question and the session will include a consideration of the relationship between the power spectrum and the frequency distribution of the variance as a basis for assessing the statistical effect-size of periodic features in time-series.

Public information:
This is the tenth in a sequence of short-courses that has resulted in the book "A Primer on Fourier Analysis for the Geosciences", by Robin Crockett, Cambridge University Press. Publication 14 February 2019. https://doi.org/10.1017/9781316543818

Share:
Co-organized as NH10.1/NP10.6
Convener: Robin Crockett | Co-convener: Gavin Gillmore
Programme
| Thu, 11 Apr, 14:00–15:30
 
Room -2.31
SC1.49

Resilience has been an increasingly popular theme in disaster research due to its implications on both policy and practice in terms of reducing the negative consequences of disasters. From a social science perspective, research on the conceptualization and promotion of resilience of communities to disasters is considered highly valuable as individuals are an important actor in disaster risk management. Within this context, psychological insight into social aspects of resilience have a great potential to inform work in this field. Particularly, understanding the psychological processes involved in risk perception and preparedness of individuals and communities has helped to delineate how resilience can be promoted. This knowledge is especially important for disaster risk management as it also involves the pre-disaster phases mitigation and preparedness.

This short course aims to introduce early career scientists as well as various stakeholders (including civil society and policy makers) to the social aspects of disaster resilience with a focus on risk perception and preparedness. Particularly, psychosocial theories and/or models on risk perception and preparedness behaviors at the individual level will be explained to better understand how people perceive and respond to disasters. In order to facilitate the interest of the participants, a mini-exercise and discussion will be conducted at the beginning of the session. Upon introduction of the theories and/or models, the topic will be further elaborated by giving an overview of the research findings of various psychology studies. During the session, there will also be an opportunity to discuss how to incorporate the social aspects of disaster resilience and their implications for risk communication and disaster risk management activities.

Participation of early career scientists as well as those interested in the social aspects of disaster resilience is highly encouraged. The short course is open to everyone.

The short course is organized in cooperation with NhET (Natural hazard Early career scientists Team).

Share:
Co-organized as NH10.2
Convener: Canay Doğulu | Co-conveners: Mariana Madruga de Brito, Jonathan Rizzi, Emanuela Toto
Fri, 12 Apr, 10:45–12:30
 
Room -2.31
SC1.32

The course aims at introducing attendees to models that are able to spatially predict "where" and "how many" landslide may trigger in the future. No complex equations will be shown. We will focus instead on practically generate such models in a step-by-step tutorial. A dataset as well as the required R-code will be shared during the course to allow everyone to test the method in his/her laptop. No prior knowledge of R is required, just install it before joining the class. The course will essentially cover most of the analyses shown in https://arxiv.org/pdf/1807.08513.pdf.

Share:
Co-organized as NH10.3
Convener: Luigi Lombardo | Co-conveners: Valeria Cigala, Jonathan Rizzi, Giulia Roder
Thu, 11 Apr, 10:45–12:30
 
Room -2.62
SC1.33 ECS

So, you've been given a time series, e.g, of hourly precipitation. That's great, but how can you generate as many as you like with exactly the same statistical properties? In this short course you'll find out.

You'll be introduced to a unified method of stochastic modelling and downscaling that makes feasible the generation of time series that preserve any desired marginal probability distribution and correlation structure including features like intermittency. The workshop includes a rapid introduction in the stochastic properties of hydroclimatic processes like precipitation, flooding, wind, temperature, etc., and highlights features like stationarity, cyclostationarity, marginal distributions, correlations structures and intermittency. We'll develop and apply on-the-spot and step-by-step: (a) the iconic AR(1) model, (b) higher order AR models as a method to approach arbitrary correlations structures; (c) the parent-Gaussian framework to simulate time series with any marginal distribution and correlation; and (d) intermittent time series modelling (like precipitation) at any time scale.

Early Career Scientists (ECS) are specifically welcome, and of course, this short course is organized in cooperation with the Young Hydrologic Society (YHS; younghs.com)!

Share:
Co-organized as HS12.4/NH10.4
Convener: Simon Michael Papalexiou | Co-conveners: Yannis Markonis, Amir AghaKouchak, Nilay Dogulu
Thu, 11 Apr, 16:15–18:00
 
Room -2.85
SC1.46

R is probably the most important statistical computing language in academia. With more than 10,000 packages it has been extended in many directions, including a huge support for geospatial data (see https://cran.r-project.org/web/views/Spatial.html and Bivand, Pebesma, and Gómez-Rubio 2013). R’s flexibility and statistical capabilities have made it attractive for people working in Earth, planetary and space sciences and a need for geographic data science.

This course will introduce the audience to R’s geographical capabilities, building on the book Geocomputation with R (https://geocompr.robinlovelace.net/) by the workshop authors (Lovelace, Nowosad, and Muenchow 2018). It will cover four topics and provide a solid foundation for attendees to apply R to a range of geographic data:

1. R’s implementation of the two most important spatial data models - vector (Pebesma 2018) and raster (Hijmans 2017).
2. Spatial data visualization with R.
3. Bridges to dedicated GIS software such as QGIS.
4. Statistical learning with geographic data.

Understanding data models is vital for working with geographic data in R. Maps, based on the data, can display complex information in a beautiful way while allowing for first inferences about spatial relationships and patterns. R has already become a Geographic Information System (GIS) (Bivand, Pebesma, and Gómez-Rubio 2013) - a system for the analysis, manipulation and visualization of geographic data (Longley et al. 2015). However, R was not designed as a GIS, and therefore computing large amounts of geographic data in R can be cumbersome. Even more important, R is missing hundreds of geoalgorithms which are readily available in common Desktop GIS. To deal with these shortcomings R packages have been developed allowing R to interface with GIS software. As an example, we will introduce the RQGIS package (Muenchow, Schratz, and Brenning 2017) for this purpose but also comment on other R-GIS bridges such as RSAGA (Brenning, Bangs, and Becker 2018) and rgrass7 (Bivand 2017). We will use RQGIS to compute terrain attributes (catchment area, catchment slope, SAGA wetness index, etc.) which we will subsequently use to model and predict spatially landslide susceptibility with the help of statistical learning techniques such as GLMs, GAMs and random forests (James et al. 2013). Hence, we show by example how to combine the best of two worlds: the geoprocessing power of a GIS and the (geo-)statistical data science power of R. The short course will consist of a mixture of presentations, live code demos and short interactive exercises if time allows.

Learning objectives
By the end of this workshop, the participants should:

- Know how to handle the two spatial data models (vector and raster) in R.
- Import/export different geographic data formats.
- Know the importance of coordinate reference systems.
- Be able to visualize geographic data in a compelling fashion.
- Know about geospatial software interfaces and how they are integrated with R (GEOS, GDAL, QGIS, GRASS, SAGA).
- Know about the specific challenges when modeling geographic data.

Software requirements
1. Latest version of R and RStudio
2. R packages: sf, raster, RQGIS, RSAGA, spData, tmap, tidyverse, mlr
3. QGIS (including SAGA and GRASS), please follow our installation guide (http://jannes-m.github.io/RQGIS/articles/install_guide.html) to make sure that RQGIS can work with QGIS

References
Bivand, Roger. 2017. Rgrass7: Interface Between GRASS 7 Geographical Information System and R. https://CRAN.R-project.org/package=rgrass7.

Bivand, Roger S., Edzer Pebesma, and Virgilio Gómez-Rubio. 2013. Applied Spatial Data Analysis with R. 2nd ed. New York: Springer.

Brenning, Alexander, Donovan Bangs, and Marc Becker. 2018. RSAGA: SAGA Geoprocessing and Terrain Analysis. https://CRAN.R-project.org/package=RSAGA.

Hijmans, Robert J. 2017. Raster: Geographic Data Analysis and Modeling. https://CRAN.R-project.org/package=raster.

James, Gareth, Daniela Witten, Trevor Hastie, and Robert Tibshirani, eds. 2013. An Introduction to Statistical Learning: With Applications in R. Springer Texts in Statistics 103. New York: Springer.

Longley, Paul, Michael Goodchild, David Maguire, and David Rhind. 2015. Geographic Information Science & Systems. Fourth edition. Hoboken, NJ: Wiley.

Lovelace, Robin, Jakub Nowosad, and Jannes Muenchow. 2018. Geocomputation with R. The R Series. CRC Press.

Muenchow, Jannes, Patrick Schratz, and Alexander Brenning. 2017. “RQGIS: Integrating R with QGIS for Statistical Geocomputing.” The R Journal 9 (2): 409–28.

Pebesma, Edzer. 2018. “Simple Features for R: Standardized Support for Spatial Vector Data.” The R Journal. https://journal.r-project.org/archive/2018/RJ-2018-009/index.html.

Share:
Co-organized as BG1.73/ESSI1.19/GM12.4/NH10.5/NP10.7
Convener: Jannes Muenchow | Co-conveners: Robin Lovelace, Jakub Nowosad
Wed, 10 Apr, 08:30–10:15
 
Room -2.62
SC1.35 ECS

Machine learning (ML) is a well-established approach to complex data analysis and modelling in different scientific fields and in many practical applications. Nowadays, ML algorithms are widely used as efficient tools in GI Sciences, remote sensing, environmental monitoring and space-time forecasting. The short course gives an overview of ML algorithms widely applied in data exploration and modelling of high dimensional and multivariate geoscientific data. The main topics of the course, presented within the framework of a generic data-driven methodology of modelling, include detection of patterns and predictability, feature selection, unsupervised, supervised and active learning, visual analytics. Real case studies consider environmental pollution, natural hazards and renewable energy resources assessments.

Share:
Co-organized as ERE8.9/NH10.6/NP10.5
Convener: Mikhail Kanevski | Co-conveners: Vasily Demyanov, Fabian Guignard
Wed, 10 Apr, 14:00–15:45
 
Room -2.31
SC1.36

LSDTopoTools (https://lsdtopotools.github.io) is an open source software package used to analyse landscapes, with applications in geomorphology, ecology, hydrology, soil science and planetary science. The primary aims of the software are to enable efficient, reproducible analysis of high resolution topographic data and to support the development and implementation of novel analysis techniques. During the course, attendees will gain hands on experience performing common analyses on provided topographic datasets, learn about more advanced techniques provided by the software and will have the opportunity to discuss their research with lead developers and users of LSDTopoTools.

This short course will cover:

- The principles of reproducible topographic analysis
- The calculation of simple topographic metrics
- The extraction and analysis of channel networks from high resolution topographic data
- Publication quality visualisation of analysis results

By the end of the course attendees will:

- Have a working version of LSDTopoTools on their personal laptop, ready to be used for their own research
- Understand the benefits of making topographic analysis more reproducible
- Be able to run topographic analyses on their own datasets
- Be able to visualise the results of these analyses without commercial software

Attendees must bring a laptop and are not required to have any programming experience, although familiarity with a command line shell would be beneficial.

Share:
Co-organized as GM12.2/HS12.11/NH10.7/SSS13.39, co-sponsored by SSI
Convener: Stuart Grieve | Co-conveners: Fiona Clubb, Boris Gailleton, Martin D. Hurst, Simon Mudd
Mon, 08 Apr, 16:15–18:00
 
Room -2.62
SC1.47 ECS

R is a free and open software that gained paramount relevance in data science, including fields of Earth sciences such as climatology, hydrology, geomorphology and remote sensing. R heavily relies on thousands of user-contributed collections of functions tailored to specific problems, called packages. Such packages are self-consistent, platform independent sets of documented functions, along with their documentations, examples and extensive tutorials/vignettes, which form the backbone of quantitative research across disciplines.

This short course focuses on consolidated R users that have already written their functions and wish to i) start appropriately organizing these in packages and ii) keep track of the evolution of the changes the package experiences. While there are already plenty of introductory courses to R we identified a considerable gap in the next evolutionary step: writing and maintaining packages.

The course covers:
- reasons for building packages,
- the general package structure and their essential elements,
- efficient ways to write and document functions,
- adding and documenting example data sets and examples,
- approaches to checking, building and sharing packages,
- versioning of packages using git and GitHub.

The course is open to everyone who is interested in R and whose experiences go beyond basic scripting. Participants should be able to answer the following questions right away: What is the difference between data type and data structure? How do matrices differ from lists? How are S4-objects indexed and how are lists indexed? What is the difference between lapply() and mapply()? What are the functions missing(), on.exit() and return() good for?

Share:
Co-organized as AS6.5/CL6.06/GM12.3/HS12.13/NH10.8
Convener: Michael Dietze | Co-convener: Sebastian Kreutzer
Thu, 11 Apr, 08:30–10:15
 
Room -2.62

NH11 – Interdisciplinary co-organized sessions

GI2.3

Non-destructive testing (NDT) methods have been increasingly used over the last decades in a wide range of engineering and geosciences applications. New theoretical developments, technological advances in both hardware and software resources as well as the progress achieved in surveying, data processing and interpretation have led to a tremendous growth of equipment reliability, allowing outstanding data quality and accuracy. To this effect, the potential of many optical, acoustic, electric and electromagnetic NDT methods for stand-alone use has been greatly investigated to date. Hence, these pieces of equipment have become popular for assessment and monitoring purposes in many fields of application.
Nevertheless, the requirements of a comprehensive site investigation may be complex and time-consuming and may involve multiple expertise and many pieces of equipment. The challenge is to step forward and provide effective integration between data outputs with different physical quantities, scale domains and resolutions. In this regard, enormous development opportunities relating to data fusion, integration and correlation between different NDT methods and theories are to be further investigated in the near future.
Within this framework, this Session primarily aims at disseminating contributions from state-of-the-art NDT methods and numerical developments, promoting the integration of existing equipment and the development of new algorithms, surveying techniques, methods and prototypes for effective monitoring and assessment of survey sites. Non-destructive testing techniques of interest are related – but not limited to – the application of acoustic emission (AE) testing, electromagnetic testing (ET), ground penetrating radar (GPR), geoelectric methods (GM), laser testing methods (LM), magnetic flux leakage (MFL), microwave testing, magnetic particle testing (MT), neutron radiographic testing (NR), radiographic testing (RT), thermal/infrared testing (IRT), ultrasonic testing (UT), seismic methods (SM), vibration analysis (VA), visual and optical testing (VT/OT).
The Session will focus on the application of different NDT methods and theories and will be related – but not limited to – the following investigation areas:
- advanced data fusion;
- advanced interpretation methods;
- design and development of new surveying equipment and prototypes;
- assessment and monitoring methods for site investigations;
- assessment and monitoring protocols and procedures for site investigations;
- comprehensive and inclusive information data systems for the monitoring and assessment of survey sites;
- numerical simulation and modelling of data outputs with different physical quantities, scale domains and resolutions;
- advances in NDT methods, numerical developments and applications (stand-alone use of existing and state-of-the-art NDTs).

Share:
Co-organized as BG1.9/EMRP2.25/NH11.1
Convener: Andrea Benedetto | Co-conveners: Morteza (Amir) Alani, Andreas Loizos, Francesco Soldovieri, Fabio Tosti
Orals
| Tue, 09 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Wed, 10 Apr, 08:30–10:15
 
Hall X1
GI2.2

Environmental systems often span spatial and temporal scales covering different orders of magnitude. The session is oriented in collecting studies relevant to understand multiscale aspects of these systems and in proposing adequate multi-platform surveillance networks monitoring tools systems. It is especially aimed to emphasize the interaction between environmental processes occurring at different scales. In particular, a special attention is devoted to the studies focused on the development of new techniques and integrated instrumentation for multiscale monitoring high natural risk areas, such as: volcanic, seismic, slope instability and other environmental context.
We expect contributions derived from several disciplines, such as applied geophysics, seismology, geodesy, geochemistry, remote sensing, volcanology, geotechnical and soil science. In this context, the contributions in analytical and numerical modeling of geodynamics processes are also welcome.
Finally, a special reference is devoted to the integration through the use of GeoWeb platforms and the management of visualization and analysis of multiparametric databases acquired by different sources

Share:
Co-organized as GD7.5/GMPV5.16/NH11.2/NP4.8/SM1.17/SSS9.7
Convener: Pietro Tizzani | Co-conveners: Francesca Bianco, Antonello Bonfante, Raffaele Castaldo, Nemesio M. Pérez
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room 0.96
Posters
| Attendance Thu, 11 Apr, 10:45–12:30
 
Hall X1
GI4.4 Media

Progressively stricter requirements in geophysical prospecting, in urban and inter-urban monitoring make it important to look continuously for innovative solutions to new and old complex problems. In particular, investigation and monitoring of pollution, hydrological resources, energy efficiency, cultural heritage, cities and transportation infrastructures nowadays require technological and methodological innovations of geophysical and sensing techniques in order to properly understand the limits of the current state of art and to identify where possible the most convenient strategies to overcome limitations of current approaches. This goal can be achieved either with more advanced solutions in a general sense or with dedicated solutions, particularly suitable for the specific problem at hand.
Integrated prospecting, refined data processing, new models, hardware innovations, new ICT information and telecommunications systems can and should cooperate with each other in this sense. It is important that the scientific community finds a moment for considering the connection between adjacent aspects of the same problem, e.g. to achieve improved geophysical data, safe and reliable environmental and structural monitoring, improved processing as much as possible.
The session “ Innovative instrumentations, techniques, geophysical methods and models for near surface geophysics, cities and transportation infrastructures aims to propose one such moment, where multidisciplinary and interdisciplinary competences can interact with each other, possibly finding possible new ways to cooperate and to exchange experiences reciprocally to reach sustainable solutions.

Share:
Co-organized as BG1.13/EMRP2.30/HS11.27/NH11.3/SSS12.10
Convener: Raffaele Persico | Co-conveners: Mario Marchetti, Salvatore Piro, F.C. Ponzo
Orals
| Fri, 12 Apr, 08:30–10:15
 
Room M1
Posters
| Attendance Fri, 12 Apr, 10:45–12:30
 
Hall X1
NP4.1

This interdisciplinary session welcomes contributions on novel conceptual approaches and methods for the analysis of observational as well as model time series and associated uncertainties from all geoscientific disciplines.

Methods to be discussed include, but are not limited to:
- linear and nonlinear methods of time series analysis
- time-frequency methods
- predictive approaches
- statistical inference for nonlinear time series
- nonlinear statistical decomposition and related techniques for multivariate and spatio-temporal data
- nonlinear correlation analysis and synchronisation
- surrogate data techniques
- filtering approaches and nonlinear methods of noise reduction

We particularly encourage submissions addressing the problem of uncertainty of geoscientific time series and its treatment in the context of statistical and dynamical analysis, including:
- representation of time series with uncertain dating (in particular paleoclimatic records from ice cores, sediments, speleothems etc.)
- uncertainties in change point / transition detection
- uncertainty propagation in time series methods like correlation, synchronization, spectral analysis, PCA, networks, and similar techniques
- uncertainty propagation in empirical (i.e., data-derived) inverse models

Share:
Co-organized as AS5.17/CL5.24/HS3.7/NH11.5/SM7.7
Convener: Reik Donner | Co-conveners: Andrea Toreti, Niklas Boers, Bedartha Goswami, Aljoscha Rheinwalt
Orals
| Mon, 08 Apr, 08:30–10:15
 
Room L3
Posters
| Attendance Tue, 09 Apr, 14:00–15:45
 
Hall X4
NP2.3

Recent years have seen a substantial progress in the understanding of the nonlinear and stochastic processes responsible for important dynamical aspects of the complex Earth system. The Earth system is a complex system with a multitude of spatial and temporal scales which interact nonlinearly with each other. For understanding this complex system new methods from dynamical systems, complex systems theory, complex network theory, statistics and climate and Earth sciences are needed.

In this context the session is open to contributions on all aspects of the nonlinear and stochastic dynamics of the Earth system, including the atmosphere, the ocean and the climate system. Communications based on theoretical and modeling studies, as well as on experimental investigations are welcome. Studies that span the range of model hierarchy from idealized models to complex Earth System Models (ESM), data driven models, use observational data and also theoretical studies are particularly encouraged.

Invited speaker: Cecile Penland (NOAA)

Share:
Co-organized as AS1.10/CL4.15/NH11.9/OS1.16
Convener: Christian Franzke | Co-conveners: Balasubramanya Nadiga, Paul Williams, Naiming Yuan
Orals
| Fri, 12 Apr, 10:45–12:30, 14:00–15:45
 
Room M1
Posters
| Attendance Fri, 12 Apr, 08:30–10:15
 
Hall X4
NP1.1

Taking inspiration from the Mathematics of Planet Earth 2013 initiative, this session aims at bringing together contributions from the growing interface between the geophysical, the mathematical, and the theoretical physical communities. Specific topics include: PDEs, numerical methods, extreme events, statistical mechanics, large deviation theory, response theory, model reduction techniques, coarse graining, stochastic processes, parametrizations, data assimilation, and thermodynamics. We invite talks and poster both related to specific applications as well as more speculative and theoretical investigations. We particularly encourage early career researchers to present their interdisciplinary work in this session.

Share:
Co-organized as AS5.19/CL5.23/HS11.33/NH11.10
Convener: Valerio Lucarini | Co-conveners: Freddy Bouchet, Dan Crisan, Michael Ghil, Darryl Holm
Orals
| Wed, 10 Apr, 14:00–18:00
 
Room E2
Posters
| Attendance Thu, 11 Apr, 14:00–15:45
 
Hall X4
NP4.3

This session aims to bring together researchers working with big data sets generated from monitoring networks, extensive observational campaigns and detailed modeling efforts across various fields of geosciences. Topics of this session will include the identification and handling of specific problems arising from the need to analyze such large-scale data sets, together with methodological approaches towards semi or fully automated inference of relevant patterns in time and space aided by computer science-inspired techniques. Among others, this session shall address approaches from the following fields:
• Dimensionality and complexity of big data sets
• Data mining in Earth sciences
• Machine learning, including deep learning and other advanced approaches
• Visualization and visual analytics of big data
• Informatics and data science
• Emerging big data paradigms, such as datacubes

Share:
Co-organized as AS5.20/CL5.25/ESSI2.3/GD8.5/HS3.5/NH11.11/SM7.8
Convener: Mikhail Kanevski | Co-conveners: Peter Baumann, Sandro Fiore, Kwo-Sen Kuo, Nicolas Younan
Orals
| Mon, 08 Apr, 10:45–12:30, 14:00–18:00
 
Room L3
Posters
| Attendance Tue, 09 Apr, 10:45–12:30
 
Hall X4
GI3.6 Media

'Cosmic rays’ collectively describe particles that bombard the Earth from space. They carry information about space and, once near the Earth, interact with the magnetosphere, atmosphere, hydrosphere and lithosphere. Secondary cosmic rays created within the atmosphere can provide information about our planet that is vital to science and society. Secondary neutron radiation plays an extraordinary role, as it not only carries information about solar activity, but also produces short and long living tracer isotopes, influences genetic information of living organisms, and is extraordinarily sensitive to hydrogen and therefore also to water. Given the vast spectrum of interactions of cosmic rays with matter in different parts of the Earth, cosmic-ray research ranges from studies of the solar system to the history of the Earth, and from health and security issues to hydrology and climate change.

Although research on cosmic-ray particles is connected to a variety of disciplines and applications, they all share similar questions and problems regarding the physics of detection, modeling, and environmental factors that influence the intensity. Questions that all disciplines have in common are, for example, “How does the cosmic-ray intensity and energy spectra change with time and location on Earth?”, “How to correct the signal for magnetospheric or atmospheric fluctuations?”, “What is the influence of local structures, water bodies, and surface conditions?”, “Which computer model for cosmic-ray propagation is correct?”, or “What can we learn from other types of cosmic-ray particles?”.

The session brings together scientists from all fields of research that are related to monitoring and modeling of cosmogenic radiation. It will allow sharing of expertise amongst international researchers as well as showcase recent advancements in their field. The session aims to stimulate discussions about how individual disciplines can share their knowledge and benefit from each other.

We solicit contributions related but not limited to:
- Health, security, and radiation protection: cosmic-ray dosimetry on Earth and its dependence on environmental and atmospheric factors
- Planetary space science: satellite and ground-based neutron and gamma-ray sensors to detect water and soil chemistry
- Neutron monitor research: detection of high-energy cosmic rays variations and its dependence on local and atmospheric factors
- Hydrology and climate change: low-energy neutron sensing to measure water in reservoirs at and near the land surface, such as soils, snow pack and vegetation
- Cosmogenic nuclides: as tracers of atmospheric circulation and mixing; as a tool in archaeology or glaciology for dating of ice and measuring ablation rates; and as a tool for surface exposure dating and measuring rates of surficial geological processes
- Detector design: technological advancements for the detection of cosmic rays
- Cosmic-ray modeling: advances in modeling of the cosmic-ray propagation through the magnetosphere and atmosphere, and their response to the Earth’s surface
- Impact modeling: How can cosmic-ray monitoring support environmental models, weather and climate forecasting, irrigation management, and the assessment of natural hazards

Share:
Co-organized as AS4.55/EMRP2.41/HS11.18/NH11.14/PS4.6/ST4.8
Convener: Martin Schrön | Co-conveners: Konstantin Herbst, Markus Köhli, W. Rühm, Marek Zreda
Orals
| Wed, 10 Apr, 16:15–18:00
 
Room -2.47
Posters
| Attendance Wed, 10 Apr, 14:00–15:45
 
Hall X1
GI1.3

The nature of science has changed: it has become more interconnected, collaborative, multidisciplinary, and data intensive. Accordingly, the main aim of this session is to create a common space for interdisciplinary scientific discussion, where EGU-GA delegates involved in geoscientific networks can share ideas and present the research activities carried out in their networks. The session represents an invaluable opportunity for different networks and their members to identify possible synergies and establish new collaborations, find novel links between disciplines, and design innovative research approaches.

Part of the session will be focused on COST (European Cooperation in Science and Technology) Actions*. The first edition of the session (successfully held in 2018) was actually entirely dedicated to the COST networking programme and hosted scientific contributions stemming from 25 Actions, covering different areas of the geosciences (sky, earth and subsurface monitoring, terrestrial life and ecosystems, earth's changing climate and natural hazards, sustainable management of resources and urban development, environmental contaminants, and big data management). Inspiring and fruitful discussions took place; the session was very well attended. We are looking forward to continuing the dialogue this year and to receiving new contributions from COST Action Members.

Another part of the session will be dedicated to the activities of other national and international scientific networks, associations, as well teams of scientists who are carrying out collaborative research projects.

Finally, the session is of course open to everyone! Accordingly, abstracts authored by scientists not involved in wide scientific networks are most welcome, too! In fact, in 2018 we received a good number of such abstracts, submitted by individual scientists or small research teams who wished to disseminate the results of their studies in front of the multidisciplinary audience that characterizes this session, as an alternative to making a presentation in a thematic session. This may be a productive way to broaden the perspective and find new partners for future interdisciplinary research ventures. We hope to receive this kind of abstracts this year, as well.


-- Notes --

* COST (www.cost.eu) is a EU-funded programme that enables researchers to set up their interdisciplinary research networks (the “Actions”), in Europe and beyond. COST provides funds for organising conferences, workshops, meetings, training schools, short scientific exchanges and other networking activities in a wide range of scientific topics. Academia, industry, public- and private-sector laboratories work together in Actions, sharing knowledge, leveraging diversity, and pulling resources. Every Action has a main objective, defined goals and clear deliverables. This session was started as a follow up initiative of COST Action TU1208 “Civil engineering applications of Ground Penetrating Radar” (2013-2017, www.GPRadar.eu).

Share:
Co-organized as AS4.13/BG1.33/CL4.42/GD1.7/GM12.7/GMPV7.16/NH11.15/NP9.4/SM1.10/SSP1.7/SSS13.20/ST4.9
Convener: Lara Pajewski | Co-conveners: Simona Fontul, Aleksandar Ristic
Orals
| Mon, 08 Apr, 16:15–18:00
 
Room 2.44
Posters
| Attendance Mon, 08 Apr, 14:00–15:45
 
Hall X1

Union sessions of interest

US2

This year marks the 250th anniversary of the birth of Alexander von Humboldt (1769-1859), the intrepid explorer of the Andes and other regions in the world, and the most famous scientist of his time. Alexander von Humboldt is perhaps best known for his radical new vision of nature as a complex and interconnected global force, thereby becoming the founder of the field of biogeography and laying the ground for modern Earth-System Science approaches. It seems fitting to pay tribute to Alexander von Humboldt’s legacy by reviewing the state of the art in studies of the coupled lithosphere – atmosphere – hydrosphere – biosphere system with a focus on the Andean mountain belt. The Andes have become one of the main natural laboratories in the world to explore these questions and many recent studies have addressed its tectonic and geodynamic evolution, but also the two-way couplings between surface uplift, climatic evolution and biodiversity in the Andes and its foreland. This Union Session will bring together world-leading specialists on these questions with the aim to shed light on both suspected and unexpected couplings in the system.

Share:
Convener: Peter van der Beek | Co-conveners: Mike Burton, Giuliana Panieri, Lily Pereg (deceased)
Orals
| Fri, 12 Apr, 08:30–12:15
 
Room E1
US3 Media|ECS

Over the whole Earth history, the climate has encountered tipping points, shifting from one regulated system to the other. This tilting motion affects both climate and the carbon cycle and has played a major role in the evolution of the Earth climate, at all timescales. Earth History has been ponctuated by large climate changes and carbon cycle reorganizations, from large climate variations occurring in deep times (snowball events, terrestrialisation, Mesozoic and early Cenozoic warm episodes, quaternary glacial cycles…) to past and on-going abrupt events. Many potential triggers of those climate and carbon cycle shifts have been proposed and tested through modeling studies, and against field data, such as those directly or indirectly linked with tectonics (plate motion, orogenesis, opening/closing of seaways, weathering…) and orbital forcing. Given that the Earth climate is currently experiencing an unprecedented transition under anthropogenic pressure, understanding the mechanisms behind the scene is crucial.

Our aim is to point out the most recent results concerning how a complex system as the climate of the Earth has undergone many tipping points and what is the specificity of the future climate changes. Therefore, within this session, we would like to encourage talks discussing advances in our record and modeling of the forces triggering and amplifying the changes of Earth climate and carbon cycle across spatial and temporal scales.

Share:
Convener: Gilles Ramstein | Co-conveners: Ayako Abe-Ouchi, Richard Betts, Robert DeConto
Orals
| Fri, 12 Apr, 14:00–15:45, 16:15–18:00
 
Room E1
US4 ECS

In today’s changing world we need to tap the potential of every talented mind to develop solutions for a sustainable future. The existence of under-representation of different groups (cultural, national and gender) remains a reality across the fields of science, technology, engineering, and mathematics (STEM fields) around the world, including the geosciences. This Union Symposium will focus on remaining obstacles that contribute to these imbalances, with the goal of identifying best practices and innovative ideas to overcome obstacles.

EGU is welcoming six high-level speakers from the funding agencies and research centres on both sides of the Atlantic related to geosciences to present efforts and discuss initiatives to tackle both implicit and explicit biases. Speakers are:

Jill Karsten, AGU Diversity and Inclusion Task Force (confirmed)
Erika Marín-Spiotta, University of Wisconsin - Madison (confirmed)
Daniel Conley, Lund University (confirmed)
Giulio di Toro, University of Padua (confirmed)
Liviu Matenco, Utrecht University (confirmed)
Barbara Romanowicz, European Research Council (confirmed)

Share:
Co-sponsored by AGU and JpGU
Convener: Claudia Jesus-Rydin | Co-conveners: Alberto Montanari, Robin Bell, Chiaki Oguchi, Lily Pereg (deceased)
Orals
| Thu, 11 Apr, 14:00–18:00
 
Room E1
US5

Atmospheric composition matters to climate, weather forecasting, human health, terrestrial and aquatic ecosystems, agricultural productivity, aeronautical operations, renewable energy production, and more. Hence research in atmospheric composition is becoming increasingly cross-cutting and linked to many disciplines including climate, biogeosciences, hydrology, natural hazards, computer and data sciences, socio-economic studies and many others. There is a growing need for atmospheric composition information and an improved understanding of the processes that drive changes in the composition and resulting impacts. While atmospheric composition research is advancing rapidly, there is a need to pay more attention to the translation of this research to support societal needs. Although translational research is a major focus of the health sciences and meteorology, it is in a relatively early stage in atmospheric composition. In this Union Symposium, we plan to highlight the need for, and to illustrate exciting advances in the translation of atmospheric composition research to support services. We will build upon work within the World Meteorological Organization and other communities related to the closer linkages of weather, atmospheric composition, and climate research and related services. We will also articulate the needs for advances in observing systems, models and a better understanding of fundamental processes. This session will also serve as a celebration of the 30 year anniversary of the WMO Global Atmosphere Watch programme and an opportunity for the broader community to envision partnerships needed to facilitate the effective translation of atmospheric composition research.

Share:
Convener: Oksana Tarasova | Co-conveners: Marcos Andrade, Claudia Volosciuk
Orals
| Tue, 09 Apr, 10:45–12:15, 14:00–15:30
 
Room E1
GDB1 Media

In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures, while other studies and commentaries have emphasised the urgency on climate action, arguing that 2020 must be a turning point for global fossil fuel emissions, to increase the chance of maintaining a safe operating space for the humans on the planet. In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change.
How close are we to one or more critical thresholds (cliff edge)? Is there time to avert passing one or more of these thresholds? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

Public information:
In October 2018, the IPCC published its special report on impacts of global warming of 1.5 deg C. Another recent, highly publicised study suggests that the planet could pass an irreversible threshold into a so called “Hothouse Earth” state for a temperature increase of as low as 2 degrees C above pre-industrial temperatures.

In 2018, the IPCC celebrated its 30th anniversary. The importance of taking action on human-induced climate change has been emphasised with governments around the world since the 1990s yet CO2 concentrations continue to rise and international initiatives have, to date, had limited and insufficient impact to avert some of the most serious consequences of climate change that may pose an existential threat to modern civilisation.

How close are we to one or more critical thresholds? Is there time to avert passing one or more of them? What can the geoscience community do to reduce the risks? How important is bottom up versus top down action to ensuring the least worst outcome? These are some of the questions we will debate with world experts in their field and authors of the thought papers on these topics.

The Great Debate panellists are:
Prof. Myles Allen is Professor of Geosystem Science in the Environmental Change Institute, University of Oxford. His research focuses on how human and natural influences on climate contribute to observed climate change and risks of extreme weather and in quantifying their implications for long-range climate forecasts. He was a Coordinating Lead Author on the Intergovernmental Panel on Climate Change Special Report on 1.5 degrees, having served on the IPCC’s 3rd, 4th and 5th Assessments, including the Synthesis Report Core Writing Team in 2014.

Prof. Sabine Fuss, Mercator Research Institute on Global Commons and Climate Change (MCC), Berlin. Sabine is an economist, currently leading a working group at the MCC. She holds a professorship on Sustainable Resource Management and Global Change at Humboldt University of Berlin. Her research interests are in sustainable development, land use change and climate change mitigation. She has been an IPCC Lead Author for the Special Report on 1.5°C global warming, serves on the steering committee of the Global Carbon Project and is a guest scholar at the International Institute for Applied Systems Analysis.

Erica Hope leads the cross-sectoral ‘2050 Task Force’ and governance programme of the European Climate Foundation (ECF) in Brussels, which seeks to build knowledge, political strategies and coalitions to drive the transition to a zero emissions society by mid-century. Erica has previously worked for the energy efficiency and UK programmes of the ECF, and before that led the policy and advocacy activities of NGO network Climate Action Network Europe on energy efficiency. From 2005-2009 she was researcher to Green MEP Caroline Lucas, and has also worked at the Institute for Public Policy Research in London.

Prof. Linda Steg is professor of environmental psychology at the University of Groningen. She studies factors influencing sustainable behaviour, the effects and acceptability of strategies aimed at promoting sustainable behaviour, and public perceptions of technology and system changes. She is member of Member of the Royal Netherlands Academy of Sciences (KNAW), and lead author of the IPCC special report on 1.5°C and AR6. She works on various interdisciplinary and international research programmes, and collaborates with practitioners working in industry, governments and NGOs.

Share:
Convener: Jonathan Bamber | Co-conveners: Alberto Montanari, Didier Roche
Thu, 11 Apr, 10:45–12:30
 
Room E1
GDB2 ECS

The geosciences are currently used by policymakers in a wide variety of areas to help guide the decision-making process and ensure that the best possible outcome is achieved. While the importance of scientific advice and the use of evidence in the policymaking process is generally acknowledged by both policymakers and scientists, how scientific advice is integrated and who is responsible is still unclear.

EU Policymakers frequently highlight institutionalised processes for integrating scientific advice into policy such as European Commission's Group of Chief Scientific Advisors (SAM) and the EU Commission’s Register of Expert Groups. But how efficient and accessible are these mechanisms really?

Some emphasise the need for scientists to have their own policy networks in place so that they can share their research outcomes with policymakers who can then use it directly or pass it on to those responsible for relevant legislation. But from funding applications to teaching and even outreach activities – scientists are often already overloaded with additional tasks on top of their own research. Can they really be held responsible for keeping up with the latest policy news and maintaining a constantly changing network of policymakers as well?

This debate will feature a mixed panel of policymakers and geoscientists who have previously given scientific advice. Some key questions that the panel will debate include:
• How can the accessibility of current EU science-advisory mechanisms be improved?
• Are scientists doing enough to share their research?
• And who is responsible for ensuring that quality scientific evidence is used in policymaking?

Speakers will be encouraged to explain any science advisory mechanism that they highlight (e.g. SAM) to ensure that the debate is understood by all those in attendance.

While the panel and subsequent debate will have an EU focus, it is likely that many of the issues discussed will be applicable to countries around the world.

Public information:
David Mair: Head of Unit, Knowledge for Policy: Concepts & Methods, Joint Research Centre
Paul Watkinson: Chair of SBSTA (Subsidiary Body for Scientific and Technological Advice)
Kasey White: Director for Geoscience Policy, Geological Society of America
Günter Blöschl: Head of Institute of Hydraulic Engineering and Engineering Hydrology, Vienna University of Technology
Detlef van Vuuren: Professor in Integrated Assessment of Global Environmental Change at the Faculty of Geosciences, Utrecht University

Share:
Convener: Chloe Hill | Co-conveners: Sarah Connors, Hazel Gibson
Mon, 08 Apr, 10:45–12:30
 
Room E1
GDB3 ECS

The ever more challenging work environments and increasing pressures on Early Career Scientists e.g. publish or perish, securing grant proposals, developing transferable skills and many more – and all while having a lack of job security. This puts a big strain on Early Career Scientists and this can lead to neglected mental well-being which in turn increases the risk of developing anxiety, depression or other mental health issues. The graduate survey from 2017 (https://www.nature.com/nature/journal/v550/n7677/full/nj7677-549a.html) shows that 12% of respondents had sought help or advice for anxiety or depression during their PhD.

In this debate we want to discuss: Is there a problem? How ECS can take control of their mental wellbeing and prioritise this in the current research environment? And what support would ECS like to see from organisations like EGU or their employers?

Share:
Convener: Stephanie Zihms | Co-conveners: Raffaele Albano, Anita Di Chiara, Hazel Gibson, Mathew Stiller-Reeve
Thu, 11 Apr, 19:00–20:30
 
Room E1
GDB4 ECS

"What counts may not be countable and what is countable may not count". Assessments of scientists and their institutions tend to focus on easy-to-measure metrics related to research outputs such as publications, citations, and grants. However, society is increasingly dependent on Earth science research and data for immediate decisions and long-term planning. There is a growing need for scientists to communicate, engage, and work directly with the public and policy makers, and practice open scholarship, especially regarding data and software. Improving the reward and recognition structure to encourage broader participation of scientists in these activities must involve societies, institutions, and funders. EGU, AGU, and JPGU have all taken steps to improve this recognition, from developing new awards to starting journals around the topic of engaging the public to implementing FAIR data practices in the Earth, environmental, and space sciences, but far more is needed for a broad cultural change. How can we fairly value and credit harder-to-measure, these less tangible contributions, compared to the favoured metrics? And how can we shift the emphasis away from the "audit culture" towards measuring performance and excellence? This session will present a distinguished panel of stakeholders discussing how to implement and institutionalize these changes.

Public information:
Moderator:
Robin Bell - AGU President

Co-Moderator:
Helen M. Glaves - President of the EGU ESSI Division

Panelists:

Liz Allen – Director of Strategic Initiatives at F1000
Visiting Senior Research Fellow, Policy Institute, King's College London

Stephen Curry – Professor and Assistant Provost, Imperial College London
Chair, Declaration on Research Assessment (DORA)

Demetris Koutsoyiannis – Professor and former Dean, Faculty of Engineering, Technical University of
Athens, Past Editor in Chief of the Hydrological Sciences Journal of IAHS

Share:
Co-sponsored by AGU and JpGU
Convener: Alberto Montanari | Co-conveners: Jonathan Bamber, Robin Bell, Hiroshi Kitazato, Lily Pereg (deceased)
Wed, 10 Apr, 10:45–12:30
 
Room E1
GDB5 Media

Public information:
Plan S, devised by a coalition of research funders with support from the European Commission and European Research Council, demands that by January 1, 2020 research supported by participating funders must be published in Open Access journals. Representatives from subscription-based and Open Access publishers, architects of Plan S, and researchers affected by it will debate questions surrounding the implementation of the plan and its consequences.

The panelists are David Sweeney, Heike Langenberg, Marc Schiltz and Brooks Hanson. They will present the case for and against mandatory OA followed by an open debate with questions and comments from the audience.

David Sweeney is Executive Chair of Research England, the biggest research funder in the UK. He has been invited to visit many countries to advise on research assessment and funding, particularly with respect to research impact. He is also co-chair of the Implementation Task Force for Plan S, the international initiative on full and immediate open access to research publications.

Heike Langenberg is the Chief Editor of Nature Geoscience. She started her editorial career in 1999 as an Associate, then Senior Editor at Nature handling manuscripts in the broad area of climate sciences. In 2007 she moved to Nature Geoscience to launch the journal in January 2008. A graduate in mathematics of the Philipps-Universität Marburg, Germany, she ventured into oceanography for her PhD at the University of Hamburg. Her postdoctoral research at various research institutes in Hamburg was focused on numerical simulations of the ocean and atmosphere at a regional scale.

Marc Schiltz is president of Science Europe, the European association of all major national public research funding and research performing organisations. In this role, he has contributed to setting the European agenda to foster Open Science and is one of the architects of Plan S. He is also leading the Luxembourg National Research Fund. He is a relentless advocate of science and research, serving on a number of external boards and committees, both at the national and international level. Having received a PhD in Crystallography from the University of Paris-Sud and an executive MBA from INSEAD, Marc has been active in research and higher education for more than 25 years and held research and faculty positions in several European countries.

Brooks Hanson is the Executive Vice President for Science for the American Geophysical Union (AGU), responsible for AGU’s publications, meetings, ethics and data programs, and Thriving Earth Exchange. He previously acted as Sr. Vice President for Publications at AGU, where he was responsible for AGU's portfolio of books and 21 journals and served as Deputy Editor for Physical Sciences at Science. Brooks received a Ph.D. in Geology from UCLA and held a post-doctoral appointment at the Department of Mineral Sciences at the Smithsonian Institution.

Share:
Convener: Katja Fennel | Co-convener: Jonathan Bamber
Tue, 09 Apr, 16:15–18:00
 
Room E1
SCS1 Media|ECS

Wed, 10 Apr, 12:45-14:00 / Room E1

Public information:
The dialogue between scientists, institutions, policymakers and the general public is widely recognised as an essential step towards a fair and sustainable society. Nowadays, more than ever in human history, international cooperation is an essential requirement for protecting the planet, advancing science and ensuring an equitable development of the global economy.
Despite its importance, the above dialogue can be a challenge for scientists, who often cannot find a productive connection with governments and politicians. Scientific associations are a key link between researchers and policy makers, as they have the potential to establish a durable and profitable connection with institutions.
The EGU elected the dialogue with society as one of its priority missions. At its General Assembly, the EGU is launching an innovative symposium format, Science and Society (SCS), to host scientific forums specifically dedicated to connecting with high-level institutions and engaging the public and policymakers.
The conversation with Ilaria Capua and Mario Monti will focus on science and politics with a global perspective, and the impact of populism on European integrity and therefore scientific research. The discussion will elaborate on optimal strategies to deliver topical and clear scientific messages to key institutions.
Ilaria Capua is a virologist best known for her research on influenza viruses and her efforts promoting open access to genetic information on emerging viruses. In 2006, Science reported on Capua’s effort towards open access science, stating that she had “renewed the debate about how to balance global health against scientists’ needs to publish and countries’ demands for secrecy". She has been a member of the Italian parliament from 2013 to 2016 and a fake news victim. She is currently a full professor at the University of Florida in Gainesville, Florida, US, and director of the UF One Health Center of Excellence.
Mario Monti served as a European Commissioner from 1995 to 2004, with responsibility for the internal market, services, customs, taxation and competition. He was Prime Minister of Italy from 2011 to 2013, leading a government of national unity to cope with the Italian debt crisis. Monti has also been Rector and is currently President of Bocconi University in Milan. His publications deal mainly with monetary and financial economics, public finance, European integration, competition policy. He is currently lifetime member of the Italian Senate.
During the conversation, Ilaria Capua and Mario Monti will present their vision with two 15-minute talks that will be followed by 20 minutes dedicated to questions from the audience and answers.

Share:
Conveners: Alberto Montanari, Jonathan Bamber
Wed, 10 Apr, 12:45–14:00
 
Room E1
SCS2 Media|ECS

Plastic pollution is recognized as one of the most serious and urgent problems facing our planet. Rates of manufacture, use and ultimately disposal of plastics continue to soar, posing an enormous threat to the planet’s oceans and rivers and the flora and fauna they support. There is an urgent need for global action, backed by sound scientific understanding, to tackle this problem.

This Union Symposium will address the problems posed to our planet by plastic pollution, and examine options for dealing with the threat.

Share:
Convener: Jessica Hickie | Co-conveners: Bruce Newport, Christopher Hackney, David Todd, Tim van Emmerik
Orals
| Mon, 08 Apr, 14:00–17:45
 
Room E1
SCA1 ECS

The Games Night is a space to gather, socialise, and play some games. The catch is that all the games are based on Geoscience! Bring along your own games or try one of the others in the session and meet the people who created them. This will also be your chance to try games featured in the Games for Geoscience session.

Public information:
Confirmed games include -
Breath of the Wild, HEAT, Flash Flood! Vol. 2, Resilience, Druids & Defences, Wanted: Head of the Centre for Flood Forecasts (IMPREX serious game), Rivers Top Trumps.

Share:
Convener: Christopher Skinner | Co-conveners: Rolf Hut, Sam Illingworth, Elizabeth Lewis, Jazmin Scarlett
Programme
| Wed, 10 Apr, 18:00–20:00
 
Foyer D
SCA2 ECS

Join us to help put some of the world's most vulnerable places on the map. A mapathon is a mapping marathon, where we get together to contribute to OpenStreetMap - the world's free map.
No experience is necessary - just bring your laptop and we will provide the training. Learn more about crowdsourcing, open data and humanitarian response - we will also provide some tips for how to host a mapathon at your home institution.

Share:
Convener: Faith Taylor | Co-conveners: Hessel Winsemius, Joanne Wood, chen zhong
Thu, 11 Apr, 19:00–20:30
 
Room L4/5
SCA3

Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Public information:
Plastic Oceans UK have been experts on plastic pollution for nearly a decade - solving the plastic crisis through their science, sustainability and education programmes. This all began with the award-winning documentary A Plastic Ocean, now available for streaming on Netflix.

Through changing attitudes, behaviours and practices on the use and value of plastics, we can stop plastic pollution reaching the ocean within a generation.

Come along to the screening of A Plastic Ocean to understand the impacts of plastic pollution around the world, what action we can take to stop plastics entering our natural world and pose your questions to the film's producer, Jo Ruxton, at the end of film.

http://plasticoceans.uk/

Share:
Convener: Fiona Tovey | Co-convener: Jessica Hickie
Tue, 09 Apr, 19:00–21:00
 
Room E2