Last Interglacial fossiliferous sequences from Santiago Island (Cabo Verde Archipelago): the palaeoecology of the Nossa Senhora da Luz section, a rare example of a protected bay in volcanic oceanic islands

Carlos Melo1,2,3, José Madeira1,3, Ricardo S. Ramalho1,3,4, Ana C. Rebelo2,3,5, Michael Rasser6, Esther González7, Alfred Uchman8, Patrícia Madeira2, Emílio Rolán9, Luís Silva2,10, Carlos M. da Silva1,3, Deirdre Ryan11, Alessio Rovere11, Mário Cachão1,3, and Sérgio P. Ávila12

1Departamento de Geologia, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
2CIBIO – Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Pólo dos Açores, Universidade dos Açores, Rua da Mãe de Deus 9500-321 Ponta Delgada, Açores, Portugal
3Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
4School of Earth Sciences, University of Bristol, Wills Memorial Building, Queen’s Road, Bristol, BS8 1RJ, UK; Lamont-Doherty Earth Observatory, Columbia University, Comer Geochemistry Building, PO Box 1000, Palisades, NY 10964-8000, USA
5Divisão de Geologia Marinha, Instituto Hidrográfico, Rua das Trinas, 49, 1249-093 Lisboa, Portugal; SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
6SMNS - Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, Germany
7Museo de Ciencias Naturales de Tenerife, C/ Fuente Morales, s/n, 38003, Santa Cruz de Tenerife, Spain
8Faculty of Geography and Geology, Institute of Geological Sciences, Jagiellonian University, Gronostajowa 3a, 30-387 Kraków, Poland
9Museo de Historia Natural, Campus Universitario Sur, 15782 Santiago de Compostela, Spain
10Departamento de Biologia, Faculdade de Ciências e Tecnologia, Universidade dos Açores, Rua da Mãe de Deus 9500-321 Ponta Delgada, Açores, Portugal
11MARUM – Center for Marine Environmental Sciences, University of Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
12Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre 1021/1055, 4169-007 Porto, Portugal

The world-wide study of the geological record of the Last Interglacial is key to reconstruct the climatic and oceanographic conditions during that time interval. Here we present preliminary results of a comprehensive field analysis of one of the most extensive and least studied Quaternary fossiliferous sequences in Cabo Verde attributed to the Last Interglacial. It is located at Nossa Senhora da Luz, which is a protected inlet at the SE coast of Santiago Island. The studied sequence shows a set of transitions between fluval and marine environments, and emersion and immersion events within a confined, highly protected bay environment. The presence, in the upper part of the sequence, of a thick layer of very fine-branched rhodoliths indicates particular ecological conditions within this bay (e.g., shallow and turbidity free waters, stable environmental conditions and/or fast growth) that are absent today and presumably played an important role for the presence of particular invertebrate species during that time. The presence of tidal specimens of the clam Senilia senilis in life position at an altitude of ~12m above sea-level allowed a re-
interpretation of relative sea-level changes, suggesting that the uplift trend of Santiago Island for the Last Interglacial period onwards (3m/100ky) is possibly 70% lower than previously calculated (10m/100ky). Fossils include five phyla, with molluscs being the most diverse and abundant. Despite the abundance of some species (e.g., the bivalves *Saccostrea cucullata*, *S. senilis*, and *Aequipecten opercularis*, and the gastropods *Persististrombus latus* and *Thais nodosa*), the general biodiversity is low. The presence of *S. cucullata* and *S. senilis*, absent from extant Cabo Verdean faunas, indicates a more humid climate, unlike the dry climate found today. Some horizons are intensively bioturbated with the crustacean burrow *Thalassinoideas suevicus*. Our new data agree with the hypothesised palaeoclimatic framework of more wet conditions than today for the Last Interglacial in the archipelago.

Keywords: Eemian, Cabo Verde Archipelago, sheltered bay, *Senilia senilis*, volcanic oceanic islands, NE Atlantic

Acknowledgments

C.S.M. and A.C.R. acknowledge, respectively, his PhD grant M3.1.a/F/100/2015 from FRCT/Açores 2020 and her Post-Doc grant SFRH/BPD/117810/2016 by FCT. R.R. and S.Á. acknowledges his IF/01641/2015 and IF/00465/2015 grants funded by FCT. A.R. and M.R. were supported by the by DFG grant RA1597/3-1. This work was supported by FCT project PTDC/CTA-GEO/28588/2017 and LISBOA-01-0145-FEDER-028588 UNTieD and DRCT 2019-2022 – ACORES-01-0145_FEDER-000078 – VRPROTO.