Assessment of regional atmospheric transport model performance using 222Radon observations

Ute Karstens1, Ingeborg Levin2, Michel Ramonet3, Christoph Gerbig4, Sabrina Arnold5, Sebastiën Conil6, Julian Della Coletta2, Arnoud Frumau7, François Gheusi8, Victor Kazan3, Dagmar Kubistin5, Matthias Lindauer5, Morgan Lopez3, Lars Maurer2, Nikos Mihalopoulos9, Jean-Marc Pichon10, and Gerard Spain11

1ICOS Carbon Portal, Lund University, Lund, Sweden (ute.karstens@nateko.lu.se)
2Institut für Umweltphysik, Universität Heidelberg, Germany
3Laboratoire des Sciences du Climat et de l'Environnement, Gif sur Yvette, France
4Max Planck Institute for Biogeochemistry, Jena, Germany
5Deutscher Wetterdienst, Observatorium Hohenpeißenberg, Hohenpeißenberg, Germany
6DRD/OPE, Andra, Bure, France
7Netherlands Organisation for Applied Scientific Research (TNO), Petten, The Netherlands
8Observatoire Midi-Pyrénées, Toulouse, France
9Department of Chemistry, University of Crete, Greece
10CNRS, Clermont Ferrand, France
11National University of Ireland, Galway, Ireland

The rather short life time of 222Radon of 5.5 days makes this radioactive noble gas an almost ideal tracer of atmospheric transport processes. 222Radon, the gaseous progeny of 226Radium, which is a trace constituent of all soils, can escape the soil grains and make its way from the unsaturated soil zone into the atmosphere. The exhalation rate of 222Radon from continental surfaces depends on soil type and permeability, but is orders of magnitude larger than that from ocean surfaces. Therefore, the atmospheric 222Radon activity concentration can be used as a measure of the residence time of air over continental surfaces or to distinguish continental from marine air masses. At continental sites, the short-term variability of 222Radon is mainly determined by diurnal or synoptic-scale boundary layer mixing processes. If its continental exhalation rate is known, 222Radon can even be applied as a quantitative tracer for evaluating regional scale transport model performance. In the present study we use 222Radon activity concentration measurements from the ICOS atmospheric station network and STILT transport model results to assess the ability of this routinely used model to correctly simulate the (diurnal) variation of boundary layer transport. This uncertainty assessment is an important step towards reliable estimates of the contribution of transport model error in GHGs inversion studies that aim at providing accurate fluxes from inversion of atmospheric GHGs observations in ICOS.


