Shelf ecosystem response to the Eocene-Oligocene Transition

Laura Cotton¹, David Evans², and Daniela Schmidt¹
¹School of Earth Sciences, University of Bristol, Bristol, United Kingdom of Great Britain and Northern Ireland
²Institute of Geosciences, Goethe University Frankfurt, Germany

The Eocene-Oligocene transition (EOT) is one of the most dramatic climate shifts of the Cenozoic with severe consequences for reef ecosystems. The onset of continental Antarctic glaciation is associated with widespread environmental change, resulting in a global peak in biotic turnover. Whilst numerous studies of the biotic response to the changes at the EOT have been carried out, most high-resolution studies consist of open ocean records of marine plankton and predominantly single groups of organisms. However, this is not representative of the ocean system as a whole and does not provide a holistic view of mechanism of restructuring of the marine ecosystems. The shelf seas and reefs are some of the most diverse and fundamentally important ecosystems of the oceans. Long-term diversity loss across the EOT has been shown in several macrofossil studies, but mainly at low resolution, and recovery is not well understood. Many shelf species are ecosystem engineers whose loss and recovery have profound implications for the entire ecosystem. Understanding these interactions will provide insights into shallow marine ecosystems and their response to major climate perturbations.

The Tanzanian Drilling Project EOT record (TDP 11, 12, 17) is recognised globally for its completeness and exceptionally preserved calcareous microfossils. It is most importantly, though, a rare record of both shallow water organisms and open ocean plankton. The latter are fundamentally important for reconstructions of the environment and a globally calibrated timescale. Here we draw together a unique dataset of high-resolution mollusc, Dasycladaceae, bryozoan, larger benthic foraminifers, coral, smaller benthic foraminifera, trace element and isotope records from the EOT. The response and recovery of these species is compared with known, modern physiology of each group to provide a complete picture of the shallow marine ecosystem response.

Following rapid extinctions within the larger foraminifera during the transition, molluscs, Dasycladaceae and bryozoans all show increases in abundance, indicating a major shift in shelf ecosystem composition. These assemblage changes are coincident with a period of more positive values in δ¹³C of both benthic and planktonic foraminifera and changes in trace element values. Comparison with the open ocean record of planktonic foraminiferal, pteropod, and nannofossils confirm these assemblage changes are a biological, rather than sedimentological response and additionally support a that a transition to more eutrophic conditions took place. An environmental framework of traditional and novel geochemistry, indicate that increased nutrient fluxes played a pivotal role in restructuring shelf ecosystem dynamics and therefore offers new insight into
mechanisms of reorganisation under ecosystem loss and environmental change.