Characterizing magnetite reference material for secondary ion mass spectroscopy (SIMS)

Malin Andersson1, Valentin Troll1, Martin Whitehouse2, Frances Deegan1, Karin Högdahl1,3, Erik Jonsson1,4, Gavin Kenny2, and Ulf Andersson5

1Department of Earth Sciences, Uppsala University, Uppsala, Sweden
2Department of geosciences, Swedish Museum of Natural History, Stockholm, Sweden
3Geology and Mineralogy, Åbo Akademi University, Turku, Finland
4Department of Mineral Resources, Geological Survey of Sweden, Uppsala, Sweden
5Research & Development, Luossavaara-Kirunavaara AB, Kiruna, Sweden

Sweden is responsible for over 90% of the iron ore production in the European Union, the bulk of which originates from the Kiruna-Malmberget region in northern Sweden, the type locality for Kiruna-type apatite-iron oxide ores. Despite thorough investigations of these long known deposits, their origin is still debated. Currently, two main formation theories are discussed: formation by orthomagmatic processes (Nyström & Henriquez 1994; Troll et al. 2019), versus hydrothermal processes (Hitzman et al. 1992; Smith et al. 2013).

Secondary ion mass spectrometry (SIMS) analysis allows gathering of more detailed information regarding intra-crystal variations, such as core to rim growth zonations, than bulk analysis do. Measurements of δ56Fe and δ18O in Kiruna-type magnetites by SIMS would therefore aid in the determination of their main formation process. However, there are conflicting studies regarding crystallographic orientation effects of δ56Fe and δ18O in magnetite, and while some authors found that the isotope ratios varied depending on how the crystal was oriented (e.g. Huberty et al. 2010), others found no such effects (e.g. Marin-Carbonne et al. 2011). This research project thus aims to further examine any effects of crystal orientation on Fe and O isotope signatures and identify a suitable magnetite reference material for SIMS analysis. To enable comparison between isotope ratios and crystal orientations, the sample orientations will therefore be determined by electron backscatter diffraction (EBSD) prior to SIMS analysis. SIMS analysis require reference material mounted next to the sample for continuous corrections during analysis. Different magnetite samples will now be tested for usage as reference materials. If a homogeneous reference material is found, future studies can utilise it for further investigations of the formation of Kiruna-type magnetite, as well as any other research concerning δ56Fe or δ18O in magnetite.


