SIT4ME project: Up-scaling seismic methods for mineral exploration in the Zinkgruvan mining area, Sweden

Alba Gil1, Alireza Malehmir1, Stefan Buske2, Juan Alcalde3, Puy Ayarza4, Yesenia Martínez4, Louise Lindskog2, Bill Spicer6, Ramon Carbonell3, Dirk Orlowsky7, Matthew Penney6, and Anja Hagerud5

1Department of Earth Sciences, Uppsala University, Sweden
2Technische Universität Bergakademie Freiberg, Germany
3Institute of Earth Sciences Jaume Almera (ICTJA-CSIC), Spain
4Department of Geology, University of Salamanca, Spain
5Zinkgruvan Mining AB, Sweden
6Lundin Mining Corporation, Canada
7DMT GmbH & Co, Germany

Mineral resources are used in large quantities than ever before because they are fundamental to our modern society. To this front and facing an up-scaling challenge, the EIT Raw-Materials funded project SIT4ME (Seismic Imaging Techniques for Mineral Exploration) was launched involving several European institutions. As part of the project, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area at the Bergslagen mineral district of Sweden, which hosts one of the largest volcanic-hosted massive sulphide (VMS) deposits in the country.

In November 2018, a dense multi-method seismic dataset was acquired in the Zinkgruvan mining area, in a joint collaborative approach among Swedish, Spanish and German partners. A combination of sparse 3D grid and dense 2D profiles in an area of approximately 6 km² was acquired using a 32t seismic vibrator (10-150 Hz) of TU Bergakademie Freiberg, enabling reasonable pseudo-3D sub-surface illumination. For the data acquisition, a total of approximately 1300 receiver positions (10-20 m apart), using different recorders, and 950 source positions were surveyed. All receivers were active during the data acquisition allowing a combination of 2D and semi-3D data to be obtained for various imaging and comparative studies. The main objective of the study, apart from its commercial-realization approach, was also to provide information useful for deep-targeting and structural imaging in this complex geological setting. The main massive-sulphide bearing horizon, Zinkgruvan formation, is strongly reflective as correlated with the existing boreholes in the mine. Careful analysis of the seismic sections suggests a dominant northeast-dipping structure, consistent with the general plunge of the main Zinkgruvan fold that has been suggested in the area.

Acknowledgements: EIT-RawMaterials is gratefully thanked for funding this up-scaling project 17024.