EGU2020-11015
https://doi.org/10.5194/egusphere-egu2020-11015
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Using Dynamic Adaptive Policy Pathways and hydrological modelling to co-create water resource adaptation policies for climate change: a practical example for southern Portugal

João Pedro Nunes, Luís Filipe Dias, Bruno A. Aparício, Inês Morais, Ana Lúcia Fonseca, Amandine Valérie Pastor, and Filipe Duarte Santos
João Pedro Nunes et al.
  • CE3C: Centre for Ecology, Evolution and Environmental Changes, Faculty of Sciences, University of Lisbon, Lisbon, Portugal (jpcnunes@fc.ul.pt)

Mediterranean agricultural systems often rely on irrigation, which can cause conflicts with domestic water demand due to limited water resources. Climate change could enhance these conflicts by bringing a drier climate, lowering water availability, while increasing irrigation demands, therefore creating a need for timely adaptation actions. However, the creation of adaptation plans requires the integration of local policy-makers and stakeholders, both to ensure that the plans are adjusted to local physical and social conditions, and to secure investment in the implementation phase. As many are not technical experts in water resources, this integration requires innovative methodologies to ensure that knowledge gained from advanced hydrological methods can be effectively transmitted for use.

These issues were addressed in the climate change adaptation plan for water resources in the Algarve region (southern Portugal), which was co-created between hydrologists and local stakeholders and policy-makers under project CLIMAAA, by using the Dynamic Adaptive Policy Pathways (DAAP) approach to synthetize the results from hydrological modelling of future scenarios.

Future scenarios were simulated from the present until 2100 using a hydrological model, with multiple realizations of climate scenarios RCP4.5and RCP8.5. The results show an increase in water stress conditions, mainly in the RCP8.5 scenario. Future scenarios and potential adaptation measures were discussed with the local policy-makers (regional and municipal water managers) and water users (water utilities, farmer associations). An agreed-upon set of measures was then simulated with the model to assess their effectiveness for adaptation. These results were used to design a DAAP specifically for the water sector in the Algarve.

Policy-makers were then presented with the DAPP, combined with a cost assessment, and selected the most suitable and politically reliable adaptation pathway until 2100. They did not consider socially desirable to decrease irrigation use, and showed a strong preference for measures such as promoting efficient water use and water retention landscapes, which are distributed and incremental, to measures such as wastewater recycling which require a large investment. However, they did consider desalination as a last resort despite the high investment, to be applied in case other measures fail to maintain water stress below an acceptable threshold. In the end, an adaptation plan for water resources was co-created between policy-makers and researchers which strongly reflected local desires and preferences, while ensuring that its effectiveness was assessed with the best available tools; this plan is now in in the review and implementation stage.

How to cite: Nunes, J. P., Dias, L. F., Aparício, B. A., Morais, I., Fonseca, A. L., Pastor, A. V., and Santos, F. D.: Using Dynamic Adaptive Policy Pathways and hydrological modelling to co-create water resource adaptation policies for climate change: a practical example for southern Portugal, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-11015, https://doi.org/10.5194/egusphere-egu2020-11015, 2020

Displays

Display file