Exploitation of unsuitably oriented foliation by localized mylonites and pseudotachylytes (Tauern Window, Eastern Alps)

Giovanni Toffol\textsuperscript{1}, Giorgio Pennacchioni\textsuperscript{1}, Luiz Fernando Grafulha Morales\textsuperscript{2}, and Simone Papa\textsuperscript{1}

\textsuperscript{1}Department of Geosciences, University of Padova, Padua, Italy
\textsuperscript{2}Structural Geology and Tectonics Group, ETH Zürich, Zürich, Switzerland

During exhumation, metamorphic rocks change their rheological behavior from dominantly ductile to brittle. Especially at the “brittle-ductile transition” at the bottom of the brittle crust, which coincides roughly with the domain where most “shallow” earthquakes nucleate, rocks exhibit a close interplay between ductile flow and fracturing.

In the Neves area (Tauern window, Eastern Alps) the exhumation across the brittle-ductile transition of amphibolite-facies meta-granitoids during the Alpine cycle is recorded by the association of pseudotachylyte veins and localized low-grade mylonites (stage-2 deformation). The \textit{stage-2} structures exploited the precursor amphibolite-facies foliation within meter-thick mylonites (stage-1 deformation) and were in turn overprinted by epidote-chlorite-bearing shear fractures and veins (stage-3 deformation). The kinematics and orientation of stage-1 and stage-3 structures indicate a slight rotation of the regional shortening direction from 345° to about 360°. This implies that stage-2 mylonites and pseudotachylytes developed at a high angle to the shortening direction.

The syn-kinematic metamorphic assemblage of \textit{stage-2} mylonites includes quartz, oligoclase (Ab\textsubscript{75}), biotite, epidote, and minor muscovite and K-feldspar; garnet was not stable. This assemblage constrains the deformation at upper greenschist facies condition and temperatures of around 400 °C. During mylonitization the coarse-grained (mm-sized) amphibolite-facies quartz recrystallized by subgrain rotation to ultra-fine (~ 3 µm average grain size determined from EBSD maps) aggregates. Such a small grain size yields differential stress > 200 MPa during \textit{stage-2} mylonitization, considering the piezometer of Cross \textit{et al.}, 2017\textsuperscript{1}.

Pseudotachylytes are in a close spatial association with \textit{stage-2} mylonites and share the same sense of shear. There is no evidence of a ductile overprint of pseudotachylytes. The \textit{stage-2} structures developed at a very high angle to the inferred shortening direction, which implies that the coseismic slip occurred on planes with a very low friction coefficient (estimated <0.3), contradicting the high differential stress estimated for the mylonites. We infer a genetic relationship between \textit{stage-2} mylonite and pseudotachylyte. Mylonites progressively formed the mica-rich foliation planes, continuous over large distances, that provided the weak mechanical anisotropy eventually leading to coseismic slip.
Reference: