The global freshwater availability and water use model WaterGAP 2.2d

Hannes Müller Schmied1,2, Denise Cáceres1, Stephanie Eisner3, Martina Flörke4, Christoph Niemann1, Thedini Asali Peiris1, Eklavyya Popat1, Felix T. Portmann1, Robert Reinecke5, Maike Schumacher6, Somayeh Shadkam1, Camelia Eliza Telteu1, Tim Trautmann1, and Petra Döll1,2

1Institute of Physical Geography, Goethe University Frankfurt, Frankfurt am Main, Germany
2Senckenberg Leibniz Biodiversity and Climate Research Centre (SBiK-F), Frankfurt am Main, Germany
3Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
4Institute of Hydrological Engineering and Water Resources Management, Ruhr-Universität Bochum, 44801 Bochum, Germany
5International Centre for Water Resources and Global Change, Germany
6Institute of Physics and Meteorology, University of Hohenheim, Stuttgart, Germany

Freshwater availability is of vital importance for humans, freshwater biota and ecosystem functions. In the past decades, global hydrological models (GHMs) were developed to improve understanding of the global freshwater situation in a globalized world, by filling gaps in observational coverage and assessing scenarios of the future under consideration of different socioeconomic developments and climate change. The Water Global Assessment and Prognosis (WaterGAP) model was one of the first GHMs developed to evaluate freshwater resources and their use for both historical and future conditions. It consists of five water use models (for irrigation, domestic, cooling of thermal power plants, manufacturing, and livestock sectors) and the WaterGAP Global Hydrology Model (WGHM). Recently, the latest model version, WaterGAP 2.2d, was finalized, containing a number of enhancements and revisions such as a river storage-based flow velocity approach, improvements in modelling groundwater recharge in dry environments and integration of historical development of irrigated areas.

This presentation provides an overview about the WaterGAP 2.2d scheme and features, assesses global freshwater resources (runoff and streamflow) and water balance components, and provides insights to evaluation results against observed streamflow, GRACE total water storage and the AQUASTAT database.