Reconnection site and ion scale turbulence generation

Andris Vaivads1, Chengming Liu2, Yuri V. Khotyaintsev3, Daniel B. Graham3, Per-Arne Lindqvist1, Roy B. Torbert4, Jim L. Burch1, Christopher T. Russell6, Olivier Le Contel7, Barbara L. Giles8, and Daniel J. Gershman8,9

1KTH Royal Institute of Technology, Stockholm, Sweden (vaivads@kth.se)
2School of Space and Environment, Beihang University, Beijing, China
3Swedish Institute of Space Physics, Uppsala, Sweden
4Space Science Center, University of New Hampshire, Durham, New Hampshire, USA
5Southwest Research Institute, San Antonio, Texas, USA
6Department of Earth and Space Sciences, University of California, Los Angeles, California, USA
7Laboratoire de Physique des Plasmas, Paris, France
8NASA Goddard Space Flight Center, Greenbelt, Maryland, USA
9Department of Astronomy, University of Maryland, College Park, Maryland, USA

We analyze in detail a reconnection site observed by the Magnetospheric Multiscale (MMS) mission in the magnetotail. The interval around the X-line is identified based on the ion jet reversal, Hall electric fields and other reconnection signatures. At the reconnection site strong electric fields with amplitudes above 100mV/m are observed. In addition, the region shows strong turbulent variations on ion scales, including magnetic island-like structures. We discuss the cause of strong electric fields, their relation to ion scale structures and associated particle acceleration in this region. Of particular interest is the relation of the reconnection site to the generation of kinetic Alfvén waves.