Short-term variations of diffuse CO2 and H2S at the summit crater of Teide volcano, Tenerife, Canary Islands

Mar Alonso1,2, Harry T. A. Hoffman3, Joseph G. Smith4, Erin Thompson5, Fátima Rodríguez1, Cecilia Amonte1, María Asensio-Ramos1, Lia Pitti1,2, Eleazar Padrón1,2,6, and Nemesio M. Pérez1,2,6
1Instituto Volcanológico de Canarias (INVOLCAN), 38240 La Laguna, Tenerife, Canary Islands, Spain (mar@iter.es)
2Instituto Tecnológico y de Energías Renovables (ITER), 38611 Granadilla de Abona, Tenerife, Canary Islands, Spain
3School of Global Studies, University of Sussex, Brighton, BN1 9RH, UK
4Department of Marine Geology, Eckerd College, St. Petersburg, Florida 33711, USA
5Department of Earth Sciences, Durham University, Durham, DH1 3LE, U.K.
6Agencia Insular de la Energía de Tenerife (AIET), 38611 Granadilla de Abona, Tenerife, Canary Islands, Spain

Tenerife (2,034 km²) is the central and largest island of the Canarian archipelago, located about 100 km west of the African coast between 27º37’ and 29º25’N and between 13º20’ and 18º10’W. The structure of Tenerife is controlled by a volcano-tectonic rift-system with NW, NE and NS directions with Teide volcano located in the intersection of the three rifts. Teide is the highest stratovolcano in the Atlantic Ocean reaching 3,718 m.a.s.l. with its last eruption occurred in 1798 through an adventive cone of Teide-Pico Viejo volcanic complex. Persistent degassing activity, both visible and diffuse, takes place at the summit cone of the volcano, being the diffuse degassing the principle degassing mechanism of Teide (Mori et. al., 2001; Pérez et. al., 2013). As part of the volcanic monitoring program of INVOLCAN in Tenerife, 8 surveys were performed during summer 2019 in order to evaluate the short term variations of diffuse CO₂ and H₂S emissions in the summit crater. The emissions were calculated using data from 38 sampling sites homogeneously distributed inside the crater covering an area of 6,972 m² by means of a portable CO₂ and H₂S fluxmeter using the accumulation chamber method (Parkinson 1981). During the study period, CO₂ and H₂S emissions ranged from 33 ± 5 to 93 ± 25 t/d and from 0.6 ± 0.2 to 4 ± 0.1 kg/d, respectively. Despite the small changes observed in the temporal evolution, values are considered normal for a quiescence period in Teide volcanic system. Short term variations in CO₂ and H₂S emissions indicate changes in the activity of the system and can be useful to understand the behaviour of the volcanic system and as forecast of future volcanic activity.

References
