The temporal evolution of syn-sedimentary normal faults and the possible role of tip retreat

Bailey Lathrop1, Christopher Jackson1, Rebecca Bell1, and Atle Rotevatn2

1Imperial College London, Earth Science and Engineering, London, United Kingdom of Great Britain and Northern Ireland (b.lathrop17@imperial.ac.uk)
2University of Bergen, Department of Earth Science, Bergen, Norway

We need to understand how normal faults grow in order to better determine the tectono-stratigraphic evolution of rifts, and the distribution and size of potentially hazardous earthquakes. The growth of normal faults is commonly described by two models: 1) the propagating fault model (isolated growth model), and 2) the constant-length model. The propagating fault model envisages a sympathetic increase between fault lengthening (L) and displacement (D), whereas the constant-length model states that faults reach their near-final length before accumulating significant displacement (Walsh et al., 2002). Several relatively recent studies agree that faults generally follow a constant-length model, or a “hybrid model” of the two, where most faults reach their near final length within the first 20-30% of their lives, and accrue displacement throughout. Furthermore, in the past 20 years, much research has focused on how faults grow; relatively few studies have questioned what happens to the fault geometry as it becomes inactive, i.e. do faults abruptly die, or do they more gradually become inactive by so-called tip retreat. We here use a 3D seismic reflection dataset from the Exmouth Plateau, offshore Australia to support a hybrid fault growth model for normal faults, and to also determine the relationship between length and displacement as a fault dies. We show that the studied faults grew in three distinct stages: a lengthening stage (<30% of the faults life), a displacement accrual stage (30-75%), and a possible tip retreat stage (75%-end). This work has important implications in our understanding of the temporal evolution of normal faults, both how they grow and how they die.