Mapping the Oxidizing Capacity of the Global Remote Troposphere

Julie Nicely1,2, Glenn Wolfe2,3, Jason St. Clair2,3, Thomas Hanisco2, Jin Liao2,4, Luke Oman2, Gonzalo González Abad5, and the ATom Science Team*

1Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, USA.
2NASA Goddard Space Flight Center, Atmospheric Chemistry and Dynamics Laboratory, Greenbelt, MD, USA.
3Joint Center for Earth Systems Technology, University of Maryland, Baltimore County, Baltimore, MD, USA.
4Universities Space Research Association, Columbia, MD, USA.
5Harvard-Smithsonian Center for Astrophysics, Cambridge, MA, USA.

*A full list of authors appears at the end of the abstract

Observations from the NASA Atmospheric Tomography Mission (ATom) have elucidated a strong relationship between the production of hydroxyl radical (OH), the primary oxidant of the troposphere, and formaldehyde (HCHO), a major product of the oxidation of methane and other hydrocarbons. We present a proxy for global over-ocean OH based on this principle, using remote observations of HCHO from the Ozone Monitoring Instrument (OMI). Analysis of summer and wintertime remote OH from this proxy suggest a near-constant mean concentration of $1.03 \pm 0.25 \times 10^6$ cm$^{-3}$ and a Northern Hemisphere to Southern Hemisphere over-ocean OH ratio of 0.89 ± 0.06 averaged over both seasons (1s uncertainties). We also share ongoing efforts to expand on this approach by refining the scaling factors that relate OH production to HCHO as a function of CO, NO$_x$, and VOCs, with the goal of extending the proxy over land as well as across the OMI record.