Induced or triggered? The deadly February 2019 Rongxian-Weiyuan ML 4.9 earthquake in the shale gas field in Sichuan, China

Hongfeng Yang¹, Pengcheng Zhou¹, Nan Fang², Gaohua Zhu¹, Wenbin Xu², Jinrong Su³, Fanbao Meng¹, and Risheng Chu⁴

¹Earth System Science Programme, The Chinese University of Hong Kong, Shatin, Hong Kong, China (hyang@cuhk.edu.hk)
²School of Geoscience and Info-physics, Central South University, Changsha, China
³Earthquake Monitoring Centre, Sichuan Earthquake Administration, Chengdu, China
⁴Institute of Geodesy and Geophysics, Chinese Academy of Sciences, Wuhan, China

Coinciding with the extensive hydraulic fracturing activities in the southern Sichuan basin, seismicity in the region has surged in the past a few years, including a number of earthquakes with magnitudes larger than 5. On 25 February 2019, an M₄.9 earthquake struck the Rongxian County, Sichuan, China and caused 2 fatalities and 12 injuries, the first deadly earthquake associated with shale gas production. The earthquake was preceded by two foreshocks with magnitudes of M₄.7 and M₄.3 within two days. We relocated the earthquake sequence using local and regional seismic network, and obtained the focal depths of the mainshock and two foreshocks at 1 and 3 km, respectively, much shallower than the report from catalogue. Most other smaller quakes were located at 2-6 km. The mainshock had also been well captured by InSAR images, which confirmed the shallow depth of ~1 km. Both seismic and geodetic data yielded thrust faulting mechanism for the mainshock, consistent with the mapped Molin fault in the region. The two foreshocks, however, occurred on an unmapped fault that has different orientation than the Molin fault. Injection wells are found in the vicinity of the two foreshocks and the fracking depth (~2.7 km) coincides with their focal depths, suggesting a possible causal relationship. The mainshock is located in the region with positive Coulomb failure stress caused the two foreshocks. The value of Coulomb failure stress change is 0.03 bar, smaller than the typical static triggering threshold. Therefore, the mainshock is likely caused by fracking by poroelastic stress transfer.