Robust Late 21st Century Shift in the Regional Monsoons in RegCM-CORDEX Simulations

Moetasim Ashfaq1, Tereza Cavazos2, Michelle Reboita3, José Abraham Torres-Alavez4, Eun-Soon Im5, Christiana Olusegun6, Lincoln Alves7, Kesondra Key1, Mojisola Adeniyi8, Moustapha Tall9, Mouhamadou Bamba Sylla10, Shahid Mehmoon1,11, Qudsia Zafar12, Sushant Das4, Ismaila Diallo13, and Erika Coppola4

1Oak Ridge National Laboratory, Oak Ridge, Tennessee, United States of America (mashfaq@ornl.gov)
2Center for Scientific Research and Higher Education of Ensenada, Baja California, Mexico
3Federal University of Itajubá, Itajubá, MG, Brazil
4Abdus Salam International Centre for Theoretical Physics, Trieste, Italy
5Department of Civil and Environmental Engineering/ Division of Environment and Sustainability, The Hong Kong University of Science and Technology, Hong Kong
6Centre for Atmospheric Research, National Space Research and Development Agency, Anyigba, Nigeria
7National Institute for Space Research, Earth System Science Center, São José dos Campos, São Paulo, Brazil
8Department of Physics, University of Ibadan, Ibadan, Nigeria
9Laboratoire de Physique de l’Atmosphère et de l’Océan-Siméon Fongang, Ecole Supérieure Polytechnique, Université Cheikh Anta Diop, PO Box: 5085, Dakar-Fann, Dakar, Senegal
10African Institute for Mathematical Sciences, AIMS Rwanda center, P. O. Box, 7150, Kigali, Rwanda
11Research Center for Environmental Changes, Taiwan International Graduate Program, Academia Sinica, Taipei, Taiwan
12Global Change Impact Studies Centre, Islamabad, Pakistan
13Department of Geography, University of California - Los Angeles, Los Angeles, CA, USA

We use an unprecedented ensemble of regional climate model (RCM) projections over seven regional CORDEX domains to provide, for the first time, an RCM-based global view of monsoon changes at various levels of increased greenhouse gas (GHG) forcing. All regional simulations are conducted using RegCM4 at a 25km horizontal grid spacing using lateral and lower boundary forcing from three General Circulation Models (GCMs), which are part of the fifth phase of the Coupled Model Inter-comparison Project (CMIP5). Each simulation covers the period from 1970 through 2100 under two Representative Concentration Pathways (RCP2.6 and RCP8.5). Regional climate simulations exhibit high fidelity in capturing key characteristics of precipitation and atmospheric dynamics across monsoon regions in the historical period. In the future period, regional monsoons exhibit a spatially robust delay in the monsoon onset, an increase in seasonality, and a reduction in the rainy season length at higher levels of radiative forcing. All regions with substantial delays in the monsoon onset exhibit a decrease in pre-monsoon precipitation, indicating a strong connection between pre-monsoon drying and a shift in the monsoon onset. The weakening of latent heat driven atmospheric warming during the pre-monsoon period delays the overturning of atmospheric subsidence in the monsoon regions, which defers their transitioning into deep convective states. Monsoon changes under the RCP2.6
scenario are mostly within the baseline variability.