Recent scientific findings based on high-resolution core plasma imaging of the ionosphere with Swarm and ePOP

David Knudsen
University of Calgary, Canada (knudsen@ucalgary.ca)

The Thermal Ion Imagers on Swarm A-C, and the Suprathermal Electron/Ion Imager on ePOP (now “Swarm-E”) provide a unique view of charged particle distribution functions in the ionosphere at high time resolution (up to 100 images/s). Through high resolution, CCD-based imaging (~3000 pixels/image), ion drift velocity is derived from these images at a resolution of 20 m/s or better, and in general agreement with velocities derived from ground based radars [1] and an empirical convection model [2]. This talk reviews recent scientific applications of this technique, which are wide-ranging and include mechanisms of ion heating and upflow [3,4], M-I coupling via Alfvén waves [5,6], electron acceleration and heating by Alfvén waves [7,8, 9], intense plasma flows associated with “Steve” [10,11], and electrodynamics of large-scale FAC systems[12], among others. In addition, future opportunities made possible by these data will be discussed.

[4] van Irsel et al. (2020), Highly correlated ion upflow and electron temperature variations in the high latitude topside ionosphere, submitted to JGR.
[9] Shen and Knudsen (2020b), Suprathermal electron acceleration perpendicular to the magnetic field in the topside ionosphere, JGR, in press.

How to cite: Knudsen, D.: Recent scientific findings based on high-resolution core plasma imaging of the ionosphere with Swarm and ePOP, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-12192, https://doi.org/10.5194/egusphere-egu2020-12192, 2020