Assessment of hydrological and biogeochemical effects on N2O emission factors in river networks of eastern China based on long-term study

Minpeng Hu¹, Randy Dahlgren², and Dingjiang Chen¹

¹Zhejiang University, College of Environment and Resources, Hangzhou, China (hmpjerry1991@zju.edu.cn)
²Department of Land, Air, and Water Resources, University of California, Davis, CA 95616, USA

The N$_2$O emission factors (EF) in river networks remains a major source of uncertainty due to limited data availability. This study integrated three years of multiple stable isotope (15N-NO$_3$/18O-NO$_3$ and 2H-H$_2$O/18O-H$_2$O) and hydrochemistry measurements for river water and groundwater to evaluate the effects of hydrological and biogeochemical processes on riverine N$_2$O emission factors in the Yongan watershed (2474 km2) of subtropical eastern China. The EF in groundwater (0.00195 ± 0.00146) was about one magnitude higher than that in surface water (0.00038 ± 0.00020). The N$_2$O EF displayed seasonal and spatial variability in surface water and groundwater. The emission factors in surface water showed negative relationship with N levels and positive relationship with dissolved organic carbon: DIN (C:N) ratio. In contrast, N$_2$O EF in groundwater showed positive relationship with N level and negative relationship with DO concentration, implying quite different processes undergoing in surface water and groundwater. The 2H-H$_2$O/18O-H$_2$O information suggested high base flow contribution (~70%) to rivers, implying the potential N$_2$O contribution from groundwater to riverine N$_2$O. Information from 15N-NO$_3$ and 18O-NO$_3$ indicated that N$_2$O in groundwater were regulated by nitrification and denitrification, while N$_2$O in river networks was mainly derived from nitrification and may be also regulated by hydrological processes. The strong positive relationship between riverine N$_2$O concentrations and that in groundwater may indicate the potential high contribution of groundwater N$_2$O to surface water. This study highlights the importance of combining multiple isotope tracers and hydrochemistry to assess the riverine N$_2$O dynamics, as well as the necessity to consider the potential impact from groundwater N$_2$O contribution during the determination of riverine N$_2$O emission factors in rivers with high groundwater recharge.