Solar radio type III bursts are produced by electron beams that are propagating along the open magnetic field lines in the corona and interplanetary medium (IPM). They are the intense, fast drifting, and frequently observed bursts. Recently, it was reported that observations of type III bursts show a maximum spectral response at around 1 MHz. But this behavior of type III bursts is not sufficiently discussed in the literature. In order to understand this behavior we have revisited this problem and studied 2279 isolated type III bursts that are observed with Wind/Waves instrument (from space during 1995-2009) in the frequency range 10 kHz-14 MHz and found that all of them show a maximum spectral response at around 1 MHz. Since type III bursts are somewhat directive, we have studied separately, another 115 type III bursts that are simultaneously observed (in 2013-2014) using Wind/Waves and ground-based facility Nancay Decameter Array (10-80 MHz) and compared the spectral profiles. In this presentation, we will discuss the observations, applied calibration techniques and the possible theoretical explanation of why type III bursts show such behavior.