Age of Air in the Stratosphere from Observations

Marianna Linz1, Benjamin Birner2, Alan Plumb3, Edwin Gerber4, Florian Haenel5, Gabriele Stiller5, Douglas Kinnison6, and Jessica Neu7

1Harvard University, School of Engineering and Applied Sciences, Cambridge, United States of America (mlinz@seas.harvard.edu)
2Scripps Institution of Oceanography, UC San Diego, La Jolla, CA, United States of America
3MIT, Dept. of Earth Atmospheric and Planetary Sciences, Cambridge, MA, United States of America
4New York University, Courant Institute of Mathematical Sciences, New York, NY, United States of America
5Karlsruhe Institute of Technology, Karlsruhe, Germany
6NCAR, Boulder, CO, United States of America
7NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, United States of America

Age of air is an idealized tracer often used as a measure of the stratospheric circulation. We will show how to quantitatively relate age to the diabatic circulation and the adiabatic mixing. As it is an idealized tracer, age cannot be measured itself and must be inferred from other tracers. Typically, the two primary trace gases used are sulfur hexafluoride and carbon dioxide. Other tracers have a compact relationship with age, however, and can also be used to calculate age. We will discuss a range of tracer measurements from both satellites and in situ, including sulfur hexafluoride, carbon dioxide, nitrous oxide, methane, and the ratio of argon to nitrogen. We will compare the age derived from these different species, including different calculation methods and caveats, and compare with modeled ideal age and trace gas concentrations. We conclude by showing the strength of the diabatic circulation and the adiabatic mixing calculated from these trace gas calculations.