Momentum flux across breaking air-water interface

Naohisa Takagaki1, Naoya Suzuki2, Keigo Matsuda3, Satoru Komori4,5, and Yuliya Troitskaya6

1University of Hyogo, Himeji, Japan (takagaki@eng.u-hyogo.ac.jp)
2Kindai University, Higashi-Osaka, Japan (nsuzuki@mech.kindai.ac.jp)
3Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan (k.matsuda@jamstec.go.jp)
4Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan (komori@mech.kyoto-u.ac.jp)
5Research Center for Highly-Functional Nanoparticles, Doshisha University, Kyotanabe, Japan
6Institute of Applied Physics, Nizhny Novgorod, Russia (yuliyatrinity@mail.ru)

It is important to measure the momentum flux across the air–water interface in the droplet- and bubble-laden turbulent flow at extremely high-wind speeds. Generally, the momentum flux is measured by a profile method, eddy correlation method, or momentum budget (balance) method at normal wind speeds. We assessed the usage of three measurement method at extremely high wind speeds in three wind-wave tanks, Kyoto, Kindai, and Kyushu Universities, JAPAN. Here, the Kyoto tank is 15 m long, 0.8 m wide, 0.8 m high and the maximum wind speed is 68 m/s. The Kyushu tank is 64 m long and the max. speed is 40 m/s. Moreover, we will show the preliminary results for the effects of the fetch on the momentum flux.