Halogen-containing species at Comet 67P/Churyumov-Gerasimenko: Full mission results

Frederik Dhooghe1, Johan De Keyser1, Kathrin Altwegg2, Nora Hänni2, Martin Rubin2, Jean-Jacques Berthelier3, Gaël Cessateur1, Michael Combi4, Stephen Fuselier5,6, Romain Maggiolo1, and Peter Wurz2

1Royal Belgian Institute for Space Aeronomy, Brussels, Belgium (frederik.dhooghe@aeronomie.be)
2Physikalisches Institut, University of Bern, Bern, Switzerland
3LATMOS/IPSL, Université Versailles Saint-Quentin, France
4Department of Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, Michigan, USA
5Southwest Research Institute, San Antonio, Texas, USA
6University of Texas at San Antonio, San Antonio, Texas, USA

Dhooghe et al. (2017) studied halogen-bearing compounds in the coma of 67P/C-G with the Double Focusing Mass Spectrometer (DFMS) of Rosetta's ROSINA instrument during a few time periods from first encounter up to perihelion (August 2014-August 2015). The main halogen-bearing compounds identified in the comet atmosphere were the hydrogen halides HF (hydrogen fluoride), HCl (hydrogen chloride) and HBr (hydrogen bromide). The halogen to oxygen ratios were found to vary between $\sim 10^{-4}$ (Cl/O and F/O) to $\sim 10^{-6}$ (Br/O), which shows these compounds have a very low abundance. In a follow-up article, De Keyser et al. (2017) observed an increase in the halogen-to-oxygen ratio as a function of distance, which suggests a distributed source for HF and HCl, probably through progressive release of these compounds from grains. Fayolle et al. 2017 and recent work by Altwegg et al. 2020 show that also CH\textsubscript{3}Cl and NH\textsubscript{4}Cl, respectively are present in the coma.

To further our knowledge on halogen containing species, we have applied recent improvements in DFMS data analysis techniques (De Keyser et al. 2019) to obtain a high quality time series for the complete mission duration. These data analysis techniques improve the retrieval of the abundances for overlapping mass peaks (18OH$^+$ for F$^+$, H\textsubscript{2}^{18}O$^+$ for HF$^+$, H\textsubscript{34}S$^+$ for 35Cl$^+$, and H\textsubscript{2}^{34}S$^+$ for H35Cl$^+$). The contribution of CS\textsubscript{2}++ to the signal of H35Cl$^+$ has been determined from data for CS\textsubscript{2}+.

Based on the full mission data, and focusing on chlorine, we determine the 37Cl/35Cl isotopic ratio. An interesting finding is that the 35Cl$^+$/H35Cl$^+$ and 37Cl$^+$/H37Cl$^+$ ratios in the DFMS mass spectrometer do not match the NIST ones for the H35Cl and H37Cl parents. This indicates that at least one
additional chlorine source must be present. The variability of halogen-containing species as a function of time is discussed, as well as the possible role of distributed sources.

Fayolle et al. (2017): Protostellar and cometary detections of organohalogenes. Nature Astronomy 1, 703, doi.org/10.1038/s41550-017-0237-7