EGU2020-13629
https://doi.org/10.5194/egusphere-egu2020-13629
EGU General Assembly 2020
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

Effects of Flow Regime on DOM Retention in Soils: Continuous Flow vs. Flow Interruption

Jannis Florian Carstens, Georg Guggenberger, and Jörg Bachmann
Jannis Florian Carstens et al.
  • Institute of Soil Science, Leibniz University Hannover, carstens@ifbk.uni-hannover.de

Dissolved organic matter (DOM) is one of the most mobile components of the global carbon cycle. Corresponding transport processes in the environment have received plenty of attention in the context of carbon sequestration as well as the mobility of DOM-associated contaminants.

However, most previous transport studies have been conducted exclusively under continuous flow conditions, which are not comparable to real water flow characteristics in soil. The present study aims to address that gap in knowledge by systematically assessing the effect of defined flow interruption phases on the retention of DOM.

For that, the breakthrough behavior of DOM as affected by phases of flow interruption was investigated in an increasingly complex system of solid matrices rich in oxide mineral coatings: goethite coated quartz sand, disturbed Cambisol subsoil, and undisturbed Cambisol subsoil. The classic DLVO and extended DLVO (XDLVO) models including Lewis acid—base parameters were applied based on measurements of sessile drop contact angles and zeta potentials.  

DOM retention was increasing with the duration of flow interruption, and retention was considerably higher in the soils than in goethite coated sand. After 112 hours of flow stagnation, DOM release from the soils was reduced to 16 to 22 % as compared to continuous flow conditions. The retention in the different solid matrix materials was well correlated with the respective amounts of oxalate and dithionite extractable oxide mineral phases. The DLVO model was capable of correctly predicting the mobility of DOM in goethite coated sand, but not in the soils, due to the fact that soil surface charge heterogeneities could not be measured. The XDVLO model predicted short-range hydrophilic repulsive interactions that may have contributed to the distinct tailing of the DOM breakthrough curves.

We conclude that the significant DOM retention during phases of flow stagnation phases shows that more complex flow regimes need to be considered in order to assess the mobility of DOM in soils. In fact, many previous studies excluding phases of flow stagnation likely overestimated the mobility of DOM in the environment.

How to cite: Carstens, J. F., Guggenberger, G., and Bachmann, J.: Effects of Flow Regime on DOM Retention in Soils: Continuous Flow vs. Flow Interruption , EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-13629, https://doi.org/10.5194/egusphere-egu2020-13629, 2020.