Modelling lithosphere dynamics with robust rheological implementations: Towards 3D

Thibault Duretz\(^1\), René de Borst\(^2\), and Ludovic Räss\(^3\)

\(^1\)University of Rennes, Géosciences Rennes, UMR CNRS 6118, France (thibault.duretz@univ-rennes1.fr)
\(^2\)University of Sheffield, Department of Civil and Structural Engineering, Sir Frederick Mappin Building, Mappin Street
\(^3\)ETH Zurich

Reliable numerical models of lithospheric deformation require robust solution methods. The latter should account for a complex and realistic rheological model and should also provide convergent and reproducible results.

Here we present models of crustal-scale deformation that accurately capture the phenomenon of strain localisation in two-dimensions. The use of viscous regularisation yields convergent numerical results. We will compare linearisation methods (consistent tangent, effective viscosity) and discuss the implementation of rheological models (power-law viscous, hardening/softening laws). We will also present three-dimensional models of crustal-scale strain localisation that benefit from both the above-described methods and the computing power of graphical processing units (GPUs).