How to interpret Holocene palaeoenvironmental and cultural changes in SW Iberia based on the palynological record from the GeoB23519-01 core (RV METEOR cruise M152)

Cristina Val-Peón1, Daniela Eichner1, José A. López-Sáez2, Klaus Reichert1, Lisa Feist1, Pedro J.M. Costa3,4, Piero Bellanova1,5, Juan I. Santisteban6, Ivana Bosnic3, Jan Schwarzbaeur5, Mike Frenken5, Andreas Vött7, Helmut Brückner8, Holger Schüttrumpf9, César Andrade3, João F. Duarte10, and Jannis Kuhlmann11

1Neotectonics and Natural Hazards Group, RWTH Aachen University, Germany
2Environmental Archaeology Research Group, Instituto de Historia (CCHS), C.S.I.C., Madrid
3Instituto D. Luiz, Faculdade de Ciências, Universidade de Lisboa, Portugal
4Earth Sciences Department, Faculty of Sciences and Technologies, University of Coimbra, Portugal
5Laboratory for Organic-Geochemical Analysis, Institute of Geology and Geochemistry of Petroleum and Coal, RWTH Aachen University, Germany
6Department of Geodynamics, Stratigraphy and Paleontology, Fac. Geological Sciences, Complutense University of Madrid, Spain
7Institute of Geography, Natural Hazard Research and Geoarchaeology Group, Johannes Gutenberg-Universität Mainz, Germany
8Institute of Geography, Department of Geosciences, University of Cologne, Germany
9Institute of Hydraulic Engineering and Water Resource Management, RWTH Aachen University, Germany
10Divisão de Geologia Marinha, Instituto Hidrográfico, Portugal
11MARUM - Center for Marine Environmental Sciences, Research Faculty, University of Bremen, Germany

The southwest of the Iberian peninsula is, due to its border position between Africa and Europe, a key territory of major geoarchaeological interest, as well as a reservoir of biodiversity and a wildlife refuge area during the Holocene. Bioclimatic conditions have been significantly unstable during this period in the Western Mediterranean. Therefore, further studies are still required to understand how abrupt climate changes such as the 8.2 and 4.2 ka cal BP events impacted societies and environment.

In November 2018 the RV Meteor cruise M-152 retrieved 19 vibracores and 4 gravity cores along the Algarve coast after mapping the bathymetry. One of these cores, GeoB23519-01, was taken 65 m below present sea level and recovered 365 cm of sediment. Four potential event layers were identified over the last 11 ka cal BP and, at least two of them, are related to tsunami deposits (ca. 4370 cal BP and AD 1755).
This sedimentary archive was analysed in a multi-proxy approach, including palynological and micropalaeontological analyses, which allow characterizing palaeoenvironmental changes along the core. However, considering the characteristics of these deposits, we raise questions about how complex this palynological record is and how it mirrors some short-term events, climate dynamics, and cultural disruptions.