Uncertainty in strain-rate from field measurements of the geometry, rates and kinematics of active normal faults: Implications for seismic hazard assessment

Claudia Sgambato1, Joanna P. Faure Walker1, and Gerald P. Roberts2

1Institute for Risk and Disaster Reduction, UCL, London, UK
2Department of Earth and Planetary Sciences, Birkbeck, University of London, London, UK

Multiple measurements of the geometry, kinematics and rates of slip across the well-exposed Auletta fault scarp (Campania, Italy) are presented, and we use these in order to investigate: (1) the spatial resolution of field measurements needed to accurately calculate a representative strain-rate for seismic hazard calculations; (2) what aspects of the geometry and kinematics would introduce uncertainty in calculated strain-rate, if those are not measured in the field. Our results show that the magnitude of the post-glacial maximum (15\(\pm\)3 ka) throw gradually decreases towards the tip of the fault, but variations are observed along strike, across areas of structural complexity such as along-strike bends in the fault plane where the fault dip is greater. We find that if such variations are unnoticed, different values of strain-rate would be produced, and hence different values would result in seismic hazard calculations. To demonstrate this, we calculate the strain-rate across the Auletta fault using all our measurements, and subsequently degrade the dataset removing one measurement at a time and recalculating the implied strain-rate at each step. The results show that excluding measurements can alter strain-rate results beyond 1 \(\sigma\) uncertainty, thus we suggest caution when using only one measurement of slip-rate along a fault for calculating hazard, as a full understanding of the potential implied errors needs consideration. Furthermore, we investigate the effect of approximating the throw profile along the fault using boxcar and triangular slip distributions; we show that this can underestimate or overestimate the strain-rate, with results in the range of 72–237\% of our most detailed strain-rate calculation. We suggest that improved understanding of the potential implied errors in strain-rate calculations from field structural data should be implemented in seismic hazard calculations.