EGU2020-14201, updated on 31 Mar 2021
https://doi.org/10.5194/egusphere-egu2020-14201
EGU General Assembly 2020
© Author(s) 2021. This work is distributed under
the Creative Commons Attribution 4.0 License.

Multi-methodological investigation of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada

Julius Kunz, Christof Kneisel, Tobias Ullmann, and Roland Baumhauer
Julius Kunz et al.
  • Institute for Geography and Geology, University of Wuerzburg, D-97074 Wuerzburg, Germany (julius.kunz@uni-wuerzburg.de)

The Mackenzie-Delta Region is known for strong morphological activity in context of global warming and permafrost degradation, which reveals in a large number of retrogressive thaw slumps. These are frequently found along the shorelines of inland lakes and the coast; however, this geomorphological phenomenon also occurs at inland ​​streams and creeks of the Peel Plateau and the Richardson Mountains, located in the southwest of the delta. Here several active retrogressive thaw slumps are found of which some have reached an extent of several hectares, e.g. the mega slump at the Dempster Creek.

In this study we investigated a recent retrogressive thaw slump at the edge of the Richardson Mountains close to the Dempster Highway to determine the subsurface properties using non-invasive geophysical methods. We performed three-dimensional Ground Penetrating Radar (GPR) surveys, as well as quasi-three-dimensional Electrical Resistivity Tomography (ERT) surveys in order to investigate the subsurface characteristics adjacent to the retreating headwall of the slump. These measurements provide information on the topography of the permafrost table, ice content and/or water pathways on top, within or under the permafrost layer. Additionally, we performed manual measurements of the active layer thickness for validation of the geophysical models. The approach was complemented by the analysis of high-resolution photogrammetric digital elevation models (DEM) that were generated using in situ drone acquisitions.

The measured active layer depths show a strong influence of the relief and especially of small creeks on the permafrost table topography. Likely, this influence also is the primary trigger for the initial slump activity. In addition, the ERT measurements show strong variations of the electrical resistivity values in the upper few meters, which are indicative for heterogeneities, also within the ice-rich permafrost body. Especially noticeable is a layer of low resistivity values in an area adjacent to the slump headwall. This layer is found at depths between 4m to 7m, which approximately corresponds to the base of the headwall. Here, the low resistivity values could be indicative for an unfrozen or water-rich layer below the ice-rich permafrost. Consequently, this layer may have contributed to the initial formation of the slump and is important for the spatial extension of the slump.

These results present new insights into the subsurface of an area adjacent to an active retrogressive thaw slump and may contribute to a better understanding of slump development.

How to cite: Kunz, J., Kneisel, C., Ullmann, T., and Baumhauer, R.: Multi-methodological investigation of a retrogressive thaw slump in the Richardson Mountains, Northwest Territories, Canada, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-14201, https://doi.org/10.5194/egusphere-egu2020-14201, 2020.

Displays

Display file