EGU2020-17116
https://doi.org/10.5194/egusphere-egu2020-17116
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Mirror, mirror…is GBIF the FAIRest of them all?

Kyle Copas
Kyle Copas
  • GBIF Secretariat, Copenhagen, Denmark (kcopas@gbif.org)

GBIF—the Global Biodiversity Information Facility—and its network of more than 1,500 institutions maintain the world's largest index of biodiversity data (https://www.gbif.org), containing nearly 1.4 billion species occurrence records. This infrastructure offers a model of best practices, both technological and cultural, that other domains may wish to adapt or emulate to ensure that its users have free, FAIR and open access to data.

The availability of community-supported data and metadata standards in the biodiversity informatics community, combined with the adoption (in 2014) of open Creative Commons licensing for data shared with GBIF, established the necessary preconditions for the network's recent growth.

But GBIF's development of a data citation system based on the uses of DOIs—Digital Object Identifiers—has established an approach for using unique identifiers to establish direct links between scientific research and the underlying data on which it depends. The resulting state-of-the-art system tracks uses and reuses of data in research and credits data citations back to individual datasets and publishers, helping to ensure the transparency of biodiversity-related scientific analyses.

In 2015, GBIF began issuing a unique Digital Object Identifier (DOI) for every data download. This system resolves each download to a landing page containing 1) the taxonomic, geographic, temporal and other search parameters used to generate the download; 2) a quantitative map of the underlying datasets that contributed to the download; and 3) a simple citation to be included in works that rely on the data.

When authors cite these download DOIs, they in effect assert direct links between scientific papers and underlying data. Crossref registers these links through Event Data, enabling GBIF to track citation counts automatically for each download, dataset and publisher. These counts expand to display a bibliography of all research reuses of the data.This system improves the incentives for institutions to share open data by providing quantifiable measures demonstrating the value and impact of sharing data for others' research.

GBIF is a mature infrastructure that supports a wide pool of researchers publish two peer-reviewed journal articles that rely on this data every day. That said, the citation-tracking and -crediting system has room for improvement. At present, 21% of papers using GBIF-mediated data provide DOI citations—which represents a 30% increase over 2018. Through outreach to authors and collaboration with journals, GBIF aims to continue this trend.

In addition, members of the GBIF network are seeking to extend citation credits to individuals through tools like Bloodhound Tracker (https://www.bloodhound-tracker.net) using persistent identifiers from ORCID and Wikidata IDs. This approach provides a compelling model for the scientific and scholarly benefits of treating individual data records from specimens as micro- or nanopublications—first-class research objects that advancing both FAIR data and open science.

How to cite: Copas, K.: Mirror, mirror…is GBIF the FAIRest of them all?, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-17116, https://doi.org/10.5194/egusphere-egu2020-17116, 2020

This abstract will not be presented.