The hydrogeology of the transboundary Yarmouk Gorge: a case study

Nimrod Inbar1,2, Christian siebert3, Josef Guttman4, Peter Möller5, Eliyahu Rosenthal6, Isabella Shentsis6, Marwan Raggad7, Elias Salameh8, and Fabien Magri9,10

1Eastern R&D Center, Geophysics and Space Sciences, Ariel, Israel (nimr@post.tau.ac.il)
2Physics Dpt. Ariel University, Ariel, Israel (nimr@post.tau.ac.il)
3Dept. Catchment Hydrology, Helmholtz Center for Environmental Research UFZ, Halle, Germany
4Hydrology Department, Mekorot, The National Water Company, Tel Aviv, Israel
5Helmholtzentrum Potsdam, German Research Center for Geosciences GFZ, Section 3.4, Potsdam, Germany
6The Porter School for the Environment and Earth Sciences, Tel Aviv University, Tel Aviv, Israel
7The Inter-Islamic Network on Water Resources Development and Management, Amman-Jordan
8University of Jordan, Amman, Jordan
9Chair of Hydrogeology, Freie Universität Berlin, Berlin, Germany
10Dept. FA 2, Federal Office for the Safety of Nuclear Waste Management (BfE), Berlin, Germany

The Lower Yarmouk Gorge (LYG) marks both hydrogeological and Geopolitical triple junction. It serves as a meeting point for groundwater flowing from the Syrian Haurn Plateau, the Jordanian Ajloun Mountain and the Israeli Golan Heights. It is also the natural outlet of the 6,833 km² transboundary Yarmouk drainage basin, which was one of the main tributaries of the Jordan River. Within the gorge, springs and boreholes exhibits various water types flowing in a wide range of temperatures. For the three riparian states, the uncertainty of groundwater origin and flow paths imposes difficulties on the management of water flowing towards the Gorge. In last few years a series of studies have attempted to unveil some of the mystery. Numerical representation of rainfall field is a method developed in order to cope with the lack of data and contributed to the assessment of water consumption and aquifer discharge at the ungauged/unreported upstream parts of the basin (Shentsis et al., 2018 and 2019). Hydrochemistry of groundwater has been investigated in light of the natural processes in the larger Yarmouk Basin and a methodology was devalued for identifying different groundwater bodies in multi-aquifer systems (Möller et al., 2016; Rosenthal et al., 2020). Finally, a new structural model for the transboundary Lower Yarmouk Gorge has been suggested based on data from Israel and Jordan (Inbar et al., 2019) and several numerical simulations have been conducted for the study of this enigmatic fractured hydrothermal system (Magri et al., 2015 and 2016; Gurezki et al., 2016). Finally, it seems that currently we are a few steps closer towards a better understanding of this complex transboundary system and the lessons learned here can be used in other transboundary system around the world.

Faulting patterns in the Lower Yarmouk Gorge potentially influence groundwater flow paths


Möller, P., E. Rosenthal, N. Inbar, and F. Magri (2016), Hydrochemical considerations for identifying water from basaltic aquifers: The Israeli experience

Rosenthal, E., P. Möller, I. Shentsis, C. Siebert, F. Magri, J. Guttman, and N. Inbar (2020), Natural Processes determining the hydrochemistry of the groundwater in the Yarmouk basin

Shentsis, I., N. Inbar, E. Rosenthal, and F. Magri (2018), Numerical representation of rainfall field in basins of the Upper Jordan River and of the Yarmouk River

Shentsis, I., N. Inbar, E. Rosenthal, and F. Magri (2019), Assessing water consumption and aquifer discharge through springs based on the joint use of rain and flow data in the Yarmouk River Basin