Four years of soil strain monitoring on Etna Volcano Mount by means of a Three-axial Fiber Bragg Grating Sensor

Umberto Giacomelli1,2, Enrico Maccioni1, Giorgio Carelli1,3, Daniele Carbone4, Salvatore Gambino4, Massimo Orazi5, Rosario Peluso5, and Fiodor Sorrentino3,6

1Università di Pisa, Dipartimento di Fisica, Pisa Italy
2INFN - Sezione Pisa, Pisa, Italy
3Marwan Technology srl, Pisa, Italy
4Osservatorio Etneo, INGV - Sezione di Catania, Catania, Italy
5Osservatorio Vesuviano, INGV - Sezione di Napoli, Napoli, Italy
6INFN - Sezione di Genova, Genova, Italy

Rock strains detection is one of the principal ways to monitor geohazards. Classic strainmeters are cumbersome, hard to install and very expensive. Opto-electronics devices based on fiber Bragg grating technology allow to realize strainmeters with high sensitivity, low-cost, small volume and high performance.

We present the long term result of continuous soil strain monitoring on the Etna mount by a three-axial fiber Bragg grating sensor. The sensor has been developed in the framework of European Project MED-SUV (MEDiterranean SUpersite Volcanos). The installation site is a 8.5 meters deep borehole at a distance of about 7 km South-West from the summit craters of the Etna mount, at an elevation of about 1740 meters. This kind of sensor has a resolution better than 100 nanostrains on a daily timescale. Despite it is only a prototype, the sensor has worked for four years with a duty-cycle higher than 90% detecting both fast event, as earthquakes, and slow event, as epochal rocks strain behavior.