Effect of the water layer on seismic noise cross-correlation across the Northeast Atlantic, from Madeira and Canaries to the Atlas-Gibraltar zone

Graça Silveira1,2, Joana Carvalho1, Juan Pinzon1, Susana Custódio1, Carlos Corela1, and Luís Matias1

1Instituto Dom Luiz (IDL), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749–016, Lisboa, Portugal (mdsilveira@fc.ul.pt)

2Instituto Superior de Engenharia de Lisboa, Rua Conselheiro Emídio Navarro 1, 1959-007 Lisboa, Portugal

One of the aims of project SIGHT (Seismic and Geochemical constraints on the Madeira Hotspot system) is to obtain a 3D model of SV-wave velocities of the crust and upper mantle of the Northeast Atlantic area encompassing Madeira and Canary Islands to the Atlas-Gibraltar zone, using seismic noise cross-correlations in the period range 2-100 s. Ambient noise cross-correlation has been successfully applied in a variety of tectonic environments to image the structure of the Earth subsurface. This technique overcomes some limitations ascribed to source-receiver geometry and sparse and irregular earthquake distribution, allowing to image Earth structure with a resolution that mainly depends on the network design. However, the effect of the water layer in the short period Empirical Green Functions, which are obtained by seismic noise cross-correlation, for interstation paths crossing the ocean is still poorly understood.

In several studies, it has been observed that the presence of water and sediments is responsible for later wave-train arrivals. Those later arrivals are frequently disregarded when measuring group velocity, either by considering only longer periods or by specifying a given velocity range.

In this work, we present a systematic study of the influence of the water layer on both vertical and radial synthetic Rayleigh waves, as well as on higher-mode conversion and on the group velocities dispersion measurements.

We show that although the fundamental mode dominates, the presence of the first overtones at short periods (typically below 8 seconds) cannot be neglected. We also show that specifying a given velocity range when retrieving group velocity can result in a mixture of modes. Our tests reveal that, at short periods, the water has a dominant effect on ocean-continent laterally varying media.

This is a contribution to projects SIGHT (Ref. PTDC/CTA-GEF/30264/2017) and STORM (Ref. UTAP-EXPL/EAC/0056/2017). The authors would like to acknowledge the financial support FCT through project UIDB/50019/2020 – IDL.