On the invariants of velocity and magnetic field gradient tensors in MHD theory

Giuseppe Consolini1, Virgilio Quattrociocchi1,2, Massimo Materassi3, Tommaso Alberti1, and Mirko Stumpo1,4

1Istituto Nazionale di Astrofisica, Istituto di Astrofisica e Planetologia Spaziali, Roma, Italy (giuseppe.consolini@inaf.it)
2Dip. Scienze Fisiche e Chimiche, Università degli Studi dell'Aquila, L'Aquila, Italy
3Istituto dei Sistemi Complessi, CNR, Sesto Fiorentino (Fi), Italy
4Dip. di Fisica, Università degli Studi di Roma “Tor Vergata”, Roma, Italy

In the framework of MHD turbulence, the velocity and magnetic field topological features can be characterized by three quantities invariant under rotations, which are defined by the velocity and magnetic field gradient tensors. These quantities provide information about field structures and dissipative features.

In this work we present a preliminary derivation of the evolution of the invariant quantities of the velocity and magnetic field gradient tensors in the framework of MHD theory, using a Lagrangian point of view. This work can be considered as a first step useful to characterize and describe the evolution of the fields structures in heliospheric space plasmas. Furthermore, some examples of the statistical features of magnetic field gradient tensor invariants, in the inertial and dissipation ranges, are also shown and discussed.