Low-cost sensor system based on LoraWAN for monitoring water distribution systems

Harald Roclawski¹, Thomas Krätzig², Benjamin Dewals³, Laurent Vercouter⁴, Aloysio Saliba⁵, Anika Theis¹, Thomas Pirard³, Henrique Donancio⁶, Pierre Archambeau³, and Sébastien Erpicum³

¹Technical University of Kaiserslautern, Fluid Mechanics and Turbomachinery, Mechanical Engineering, Germany (roclawsk@mv.uni-kl.de)
²Dr. Krätzig Ingenieurgesellschaft mbH, Aachen, Germany
³Liege University, Research group Hydraulics in Environmental and Civil Engineering, Belgium
⁴Institut national des sciences appliquées de Rouen, LITIS LAB, MIND Group, France
⁵Federal University of Minas Gerais, Centro de Pesquisas Hidráulicas e Recursos Hídricos, Brazil

In the research project Iot.H2O, which is funded under the Water JPI Joint Call 2017 IC4WATER, the potential of the Internet of Things concept is investigated for monitoring and controlling water distribution systems. Smart sensors are used which send data via LoraWAN to gateways which are connected to the Internet. The aim of the project is to use low-cost sensors and open-source software.

In the presentation, a prototype on a laboratory scale will be shown. The design of the monitoring system will be explained in detail and compared to the design of standard SCADA systems. Results on a pump test rig based on a laboratory scale will be shown as well as first results of field tests in a real water distribution system in Germany.

The presentation will also detail how data gathered through the smart sensors will be integrated into software modelling and optimization of water distribution systems. Combined with the new data, such tools offer a range of applications of practical relevance, such as the identification of optimal locations of micro-turbines for energy recovery in water distribution networks and the estimation of water demand throughout the network.