Tracing the triple isotope composition of air by high-precision analyses of meteorites, rocks and fossils

Andreas Pack1, Meike Fischer1,2, Christian Stübler1,3, Stefan Peters1, and Dingsu Feng1

1Georg-August Universität, Geowissenschaftliches Zentrum, Abteilung Isotopengeologie, Germany (apack@uni-goettingen.de)
2Max-Planck-Institut für Sonnensystemforschung
3Karlsruhe Institute of Technology

High-precision measurements of the triple oxygen isotope ratios (δ^{18}O and Δ^{17}O) in terrestrial waters, rocks and minerals opened new and exciting applications in the field of stable oxygen isotope geochemistry. After giving a short overview over measurement techniques and various applications, it will be emphasized on tracing the atmospheric composition in rocks and minerals.

Atmospheric samples from ice cores only date back ~1 Myrs. To obtain information about the atmosphere for the 99.98% of Earth history that is not covered by ice cores, we need to look for rocks. The oxygen isotope composition of the atmosphere younger than 2.4 Gyrs is dominated by molecular oxygen (O_2). Molecular O_2 is one of few components on Earth that has a mass-independent oxygen isotope signature. The anomaly in 17O provides information about the presence of an ozone layer, the global biosphere primary production, or the atmospheric CO$_2$ mixing ratio. A few rocks and fossils provide information about the 17O anomaly of air O_2. Sedimentary sulfates may form by precipitation from SO$_4^{2-}$ that formed by subaerial oxidation of pyrite. In that process, a part of the oxygen in the sulfate originates from air O_2. Mobilizing of the sulfate oxygen can carry this anomaly over to other minerals like Fe oxides. The isotope signature of fossil tooth enamel also provides information about the atmospheric composition. Air O_2 is inhaled and used to oxidize carbohydrates and fat to (mainly) CO$_2$ and H$_2$O, which equilibrate with body water. Tooth apatite then precipitates from body water and inherits an anomaly in 17O from the inhaled air O_2. Manganese oxides are known to form by oxidation of Mn under participation of O_2. If the isotope composition of dissolved O_2 in the aqueous environment, in which the manganese oxides form is controlled by air, manganese oxides can be used to trace the composition of air O_2. It has been shown that some meteorite impact melts (tektites) have exchanged with ambient air O_2. As result of that exchange, they carry a 17O anomaly that may be used to trace the composition of air O_2. Also, I-type cosmic spherules have been shown to be indicators for the isotope anomaly of air O_2. These spherules form by aerial oxidation of asteroidal metallic Fe,Ni particles and thus can carry the anomaly of air O_2. Such recent discoveries open insights into the composition of the Earth atmosphere beyond the 1 Myrs limit from the ice core record.