Recent microseismicity observed at Hekla volcano and first velocity inversion results

Martin Möllhoff1, Meysam Rezaeifar1, Christopher J. Bean1, Kristin S. Vogfjörd2, Bergur H. Bergsson2, and Heiko Buxel3

1Dublin Institute for Advanced Studies, Geophysics, Dublin, Ireland (martin@dias.ie)
2Icelandic Meteorological Office, Bustadavegi 7-9, 108 Reykjavik, Iceland
3British Geological Survey, The Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, Scotland

Hekla is one of the most active and dangerous volcanoes in Iceland presenting a high hazard to air travel and a growing tourist population. Until now the pre-eruption warning time at Hekla is only around one hour. In 2018 we installed the real-time seismic network HERSK directly on Hekla's edifice. If microseismicity on Hekla increases prior to the next eruption the network could possibly provide a means to improve early warning. In addition it is hoped that HERSK will better our understanding of the processes driving the evolution of pre-eruptive seismicity. The configuration and tuning of a dedicated real-time detection and location system requires the determination of a suitable velocity model and station corrections. We present a catalogue of recently detected local events that we use to invert for a 1-D velocity model. We observe significant variations in station corrections and conclude that it is important to account for these in the real-time detection and location system which we are developing based on the SeisComp3 software.