Kinetic models of current sheets in the solar wind

Thomas Neukirch1, Ivan Vasko2,4, Anton Artemyev3,4, and Oliver Allanson5

1University of St. Andrews, School of Mathematics and Statistics, St. Andrews, UK
2Space Sciences Laboratory, University of California, Berkeley, CA 94720, USA
3Institute of Geophysics and Planetary Sciences, University of California, Los Angeles, USA
4Space Research Institute of Russian Academy of Sciences, Moscow, Russia
5Space and Atmospheric Electricity Group, Department of Meteorology, University of Reading, Reading, RG6 6BB, UK

Current sheets in the collisionless solar wind usually have kinetic spatial scales. In-situ measurements (e.g. by Artemis) show that these current sheets are often approximately force-free, i.e. the directions of their current density and magnetic field are aligned, despite the fact that the plasma β is found to be of the order of one. The measurements also often show systematic asymmetric spatial variations of the plasma density and temperature across the current sheets, whilst the plasma pressure is approximately uniform. We present analytical equilibrium distribution functions of self-consistent force-free collisionless current sheets which allow for asymmetric plasma density and temperature gradients.