A user-friendly probabilistic earthquake source inversion framework for joint inversion of seismic, geodetic, and gravitational signals - The Grond toolkit

Sebastian Heimann1, Marius Isken1,2, Daniela Kühn1,2, Hannes Vasyura-Bathke4, Henriette Sudhaus2, Andreas Steinberg2, Gesa Petersen1, Marius Kriegerowski1,4, Simon Daout5, Simone Cesca1, and Torsten Dahm1

1GFZ Potsdam, Section 2.1: Physics of Earthquakes and Volcanoes, Potsdam, Germany (sebastian.heimann@gfz-potsdam.de)
2University of Kiel, Kiel, Germany
3NORSAR, Norway
4University of Potsdam, Potsdam, Germany
5University of Oxford, Oxford, United Kingdom

Seismic source and moment tensor waveform inversion is often ill-posed or non-unique if station coverage is poor or signals are weak. Three key ingredients can help in these situations: (1) probabilistic inference and global search of the full model space, (2) joint optimisation with datasets yielding complementary information, and (3) robust source parameterisation or additional source constraints. These demands lead to vast technical challenges, on the performance of forward modelling, on the optimisation algorithms, as well as on visualisation, optimisation configuration, and management of the datasets. Implementing a high amount of automation is inevitable.

To tackle all these challenges, we are developing a sophisticated new seismic source optimisation framework, Grond. With its innovative Bayesian bootstrap optimiser, it is able to efficiently explore large model spaces, the trade-offs and the uncertainties of source parameters. The program is highly flexible with respect to the adaption to specific source problems, the design of objective functions, and the diversity of empirical datasets.

It uses an integrated, robust waveform data processing, and allows for interactive visual inspection of many aspects of the optimisation problem, including visualisation of the result uncertainties. Grond has been applied to CMT moment tensor and finite-fault optimisations at all scales, to nuclear explosions, to a meteorite atmospheric explosion, and to volcano-tectonic processes during caldera collapse and magma ascent. Hundreds of seismic events can be handled in parallel given a single optimisation setup.

Grond can be used to optimise simultaneously seismic waveforms, amplitude spectra, waveform features, phase picks, static displacements from InSAR and GNSS, and gravitational signals.
Grond is developed as an open-source package and community effort. It builds on and integrates with other established open-source packages, like Kite (for InSAR) and Pyrocko (for seismology).