Developing a data-driven ocean model

Rachel Furner¹,², Peter Haynes¹, Dan Jones², Dave Munday², Brooks Paige³,⁴, and Emily Shuckburgh³

¹University of Cambridge, Cambridge, UK
²British Antarctic Survey, Cambridge, UK
³UCL, London, UK
⁴Alan Turing Institute, London, UK

The recent boom in machine learning and data science has led to a number of new opportunities in the environmental sciences. In particular, climate models represent the best tools we have to predict, understand and potentially mitigate climate change, however these process-based models are incredibly complex and require huge amounts of high-performance computing resources. Machine learning offers opportunities to greatly improve the computational efficiency of these models.

Here we discuss our recent efforts to reduce the computational cost associated with running a process-based model of the physical ocean by developing an analogous data-driven model. We train statistical and machine learning algorithms using the outputs from a highly idealised sector configuration of general circulation model (MITgcm). Our aim is to develop an algorithm which is able to predict the future state of the general circulation model to a similar level of accuracy in a more computationally efficient manner.

We first develop a linear regression model to investigate the sensitivity of data-driven approaches to various inputs, e.g. temperature on different spatial and temporal scales, and meta-variables such as location information. Following this, we develop a neural network model to replicate the general circulation model, as in the work of Dueben and Bauer 2018, and Scher 2018.

We present a discussion on the sensitivity of data-driven models and preliminary results from the neural network based model.

