Overview of observed seismic signals on Mars

Savas Ceylan1, John F. Clinton2, Domenico Giardini1, Maren Böse1,2, Martin van Driel1, Fabian Euchner1, Anna Horleston3, Taichi Kawamura4, Amir Khan1,5, Guénolé Orhand-Mainsant5, John-Robert Scholz6, Simon Stähler1, Constantinos Charalambous7, W. Bruce Banerdt8, Raphaël F. Garcia5, Sharon Kedar9, Philippe Lognonné4,10, Mark Panning8, Tom Pike7, and Suzanne E. Smrekar8

1ETH Zurich, Institute of Geophysics, Zurich, Switzerland (savas.ceylan@erdw.ethz.ch)
2ETH Zurich, Swiss Seismological Service (SED), Zurich, Switzerland
3School of Earth Sciences, University of Bristol, Bristol, UK
4Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
5Institut Supérieur de l’Aéronautique et de l’Espace SUPAERO, Toulouse, France
6Max Planck Institute for Solar System Research, Göttingen, Germany
7Department of Electrical and Electronic Engineering, Imperial College London, London, UK
8Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
9Institute of Theoretical Physics, University of Zürich, Zürich, Switzerland
10Institut Universitaire de France, Paris, France

InSight landed on Mars in late November 2018, and the SEIS package, which consists of one short period and one very broadband sensor, was deployed on the surface shortly after. The data returned by the InSight is monitored in a timely manner by the Marsquake Service (MQS), a ground segment support group of InSight that has been set up to establish and maintain the seismicity catalogue. The MQS has at least one member on duty who routinely checks the data for any type of seismic signals. All suspicious signals are then communicated to the InSight team after evaluation.

To date, MQS has identified more than 365 events which are classified into two general families as high and low frequency, with each family having unique features in terms of their energy content. The most distinct quakes detected so far belong to the low frequency family that occurred on Sol 173 and 235, and have clear P and S-wave arrivals that reveal a distance around 30 degrees east of the lander, pointing the region in the vicinity of Cerberus Fossae. In addition to the signals of seismic origin, the SEIS data contain features that originate from other sources such as atmospheric effects or electronics. Part of these non-seismic observations may resemble quakes which may lead to wrong interpretations, and therefore require careful analysis.

Here, we show examples of signals of both seismic and non-seismic origins. We describe the characteristics of these observations in time and frequency domains in order to give an overview of martian data content.

How to cite: Ceylan, S., Clinton, J. F., Giardini, D., Böse, M., van Driel, M., Euchner, F., Horleston,