Origin and propagation of sedimentary sequences throughout the Escanilla fluvial routing system (South Pyrenean foreland basin)

Luis Valero\(^1\), Elisabet Beamud\(^2,3\), Miguel Garcés\(^3,4\), Andreu Vinyoles\(^3,4\), Nikhil Sharma\(^1\), Stephen E. Watkins\(^1\), Maxime Tremblin\(^1\), Cai Puigdefábregas\(^3\), François Guillocheau\(^5\), Alex C. Whitakker\(^6\), Miguel López-Blanco\(^3,4\), Pau Arbués\(^3,4\), and Sébastien Castelltort\(^1\)

\(^1\)Département des Sciences de la Terre, Université de Genève, Rue des Maraîchers 13, CH-1205, Genève
\(^2\)Laboratori de Paleomagnetisme de Barcelona (CCITUB-CSIC), Solé i Sabaris s/n, 08028, Barcelona
\(^3\)Geomodels Research Institute, Martí i Franqués s/n, 08028, Barcelona
\(^4\)Departament de Dinàmica de la Terra i l'Oceà, Facultat de Ciències de la Terra, Martí i Franqués s/n, 08028, Barcelona
\(^5\)Département des Geosciences, Université de Rennes 1/CNRS (UMR 6118), Rennes
\(^6\)Department of Earth Science and Engineering, Imperial College London, SW7 2AZ London

During middle Eocene, the Escanilla fluvial system transported and deposited material from East to West in the southern Pyrenees foreland basin. The paleogeography and sedimentology of the source to sink system is well established. The temporal framework is made of scattered low resolution magnetostratigraphies, and a robust temporal framework in the most distal (Olson) and most proximal (Sis) parts of the system. We built a new high resolution magnetostratigraphy from the middle part of the system, the Lascuarre section. The correlation of Lascuarre with the high resolution magnetostratigraphies and the integration of these data with other available chronological constraints results into a robust complete temporal framework from source to sink.

Sedimentological analyses of the Lascuarre section allow recognizing a set of sedimentary sequences throughout the record. Here we present the result of the analyses, and discuss the relative weight of the different forcing. Particularly, we elucidate the role of tectonics in relation to subsidence distribution patterns, and also the distinct expression of climate. Eventually, we identify and explore the signal propagation mechanisms of climate aberrations and of quasi-regular orbital variations along the routing system.