Cosmogenic burial dating of in cave-deposited alluvium: unravelling long-term incision rates and complex speleogenesis in multi-level cave systems

Gilles Rixhon1, Didier L. Bourlès2, Régis Braucher2, Alexandre Peeters3, and Alain Demoulin3,4
1École Nationale du Génie de l’Eau et de l’Environnement de Strasbourg (ENGIES) & LIVE UMR 7362 - CNRS, Strasbourg, France (gilles.rixhon@live-cnrs.unistra.fr)
2CEREGE, Aix-en-Provence, France
3Dept of Physical Geography and Quaternary, University of Liège, Belgium
4FSR-FNRS, Brussels, Belgium

Multi-level cave systems record the history of regional river incision in abandoned alluvium-filled phreatic passages which, mimicking fluvial terrace sequences, represent former phases of fluvial base-level stability. In this respect, cosmogenic burial dating of in cave-deposited alluvium (usually via the nuclide pair $^{26}\text{Al}/^{10}\text{Be}$) represents a suitable method to quantify the pace of long-term river incision. Here, we present a dataset of fifteen $^{26}\text{Al}/^{10}\text{Be}$ burial ages measured in fluvial pebbles washed into a multi-level cave system developed in Devonian limestone of the uplifted Ardenne massif (eastern Belgium). The large and well-documented Chawresse system is located along the lower Ourthe valley (i.e. the main Ardenian tributary of the Meuse river) and spans altogether an elevation difference exceeding 120 m.

The depleted $^{26}\text{Al}/^{10}\text{Be}$ ratios measured in four individual caves show two main outcomes. Firstly, computed burial ages ranging from ~0.2 to 3.3 Ma allows highlighting an acceleration by almost one order of magnitude of the incision rates during the first half of the Middle Pleistocene (from ~25 to ~160 m/Ma). Secondly, according to the relative elevation above the present-day floodplain of the sampled material in the Manants cave (<35 m), the four internally-consistent Early Pleistocene burial ages highlight an “anomalous” old speleogenesis in the framework of a gradual base-level lowering. They instead point to intra-karsting reworking of the sampled material in the topographically complex Manants cave. This in turn suggests an independent, long-lasting speleogenetic evolution of this specific cave, which differs from the per descensum model of speleogenesis generally acknowledged for the regional multi-level cave systems and their abandoned phreatic galleries. In addition to its classical use for inferring long-term incision rates, cosmogenic burial dating can thus contribute to better understand specific and complex speleogenetic evolution.