Accounting for model error in atmospheric forecasts

William Crawford1, Sergey Frolov2, Justin McLay1, Carolyn Reynolds1, Craig Bishop3, Benjamin Ruston1, and Neil Barton1

1Naval Research Laboratory, Marine Meteorology, United States of America (william.j.crawford@gmail.com)
2CIRES, University of Colorado, Boulder
3University of Melbourne, VIC, Australia

The presented work will illustrate the impact of analysis correction based additive inflation (ACAI) on atmospheric forecasts. ACAI uses analysis corrections from the NAVGEM data assimilation system as a representation of model error and is shown to simultaneously improve ensemble spread-skill, reduce model bias and improve the RMS error in the ensemble mean. Results are presented from a myriad of experiments exercising ACAI in stand-alone NAVGEM forecasts using two different ensemble systems; (1) the current operational EPS at FNMOC based on the ensemble transform method and (2) the Navy-ESPC EPS based on perturbed observations. The method of relaxation-to-prior-perturbations (RTPP) has also been implemented in the Navy-ESPC EPS and is shown to further improve the ensemble spread-skill relationship by allowing variance generated during the forecast to impact the initial-time ensemble variance in the subsequent cycle. Results from a simplified implementation of ACAI in the NAVGEM deterministic system will also be shown and indicate positive impact to model biases and RMSE.