EGU2020-20328, updated on 12 Jun 2020
https://doi.org/10.5194/egusphere-egu2020-20328
EGU General Assembly 2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.

Sea-ice algal phenology in a warmer Arctic

Letizia Tedesco1, Marcello Vichi2, and Enrico Scoccimarro3
Letizia Tedesco et al.
  • 1Finnish Environment Institute, Marine Research Centre, Finland (letizia.tedesco@environment.fi)
  • 2University of Cape Town, Marine Research Institute, South Africa
  • 3Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Italy

The Arctic sea-ice decline is among the most emblematic manifestations of climate change and is occurring before we understand its ecological consequences. We investigated future changes in algal productivity combining a biogeochemical model for sympagic algae with sea-ice drivers from an ensemble of 18 CMIP5 climate models. Model projections indicate quasi-linear physical changes along latitudes but markedly nonlinear response of sympagic algae, with distinct latitudinal patterns. While snow cover thinning explains the advancement of algal blooms below 66°N, narrowing of the biological time windows yields small changes in the 66°N to 74°N band, and shifting of the ice seasons toward more favorable photoperiods drives the increase in algal production above 74°N. These diverse latitudinal responses indicate that the impact of declining sea ice on Arctic sympagic production is both large and complex, with consequent trophic and phenological cascades expected in the rest of the food web.

How to cite: Tedesco, L., Vichi, M., and Scoccimarro, E.: Sea-ice algal phenology in a warmer Arctic, EGU General Assembly 2020, Online, 4–8 May 2020, EGU2020-20328, https://doi.org/10.5194/egusphere-egu2020-20328, 2020

Displays

Display file